

ESA contribution to CEOP objectives

Einar-Arne Herland

ESA data provision to CEOP

- agreement on data provision to CEOP was made in March 2007 (Category 1 proposal #3801)
- the CEOP proposal does not require observations that have to be planned
- data allocation includes several thousands of scenes from both radar and optical sensors
- access information was provided to CEOP on 5 April 2007
- the ESA EO Help and Order Desk is the interface for all issues regarding data access
- large amounts of data are available on the web for free download

GMES dedicated missions: Sentinels

Sentinel 1 – SAR imaging

All weather, day/night applications, interferometry

Sentinel 2 – Multispectral imaging

Land applications: urban, forest, agriculture, etc Continuity of Landsat, SPOT data

Sentinel 3 – Ocean and global land monitoring 12

Wide-swath ocean color, vegetation, sea/land surface temperature, altimetry

Sentinel 4 – Geostationary atmospheric

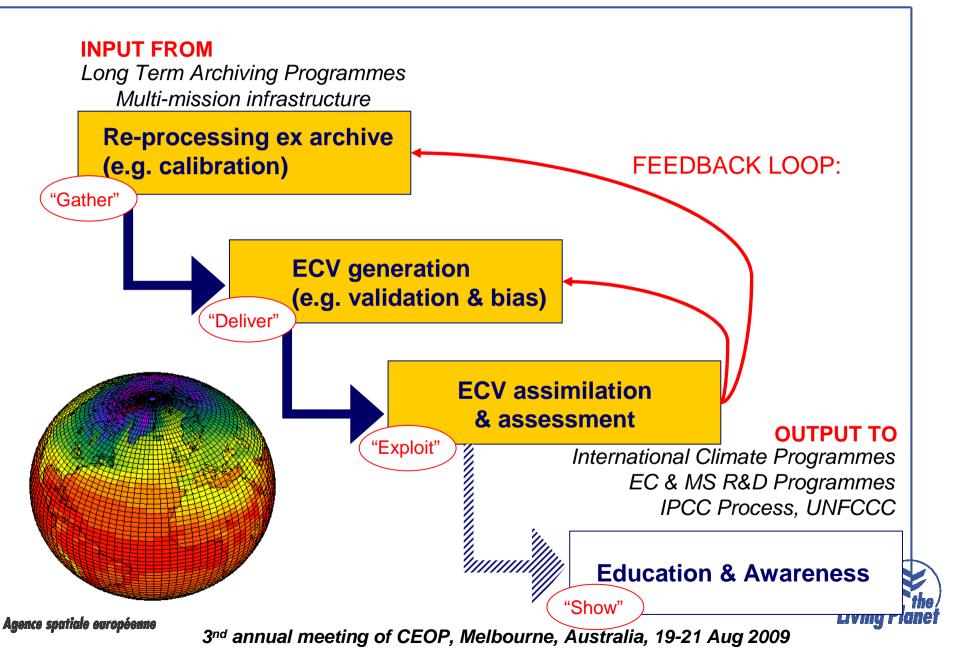
Atmospheric composition monitoring, trans-boundary pollution

Sentinel 5 – Low-orbit atmospheric

Atmospheric composition monitoring

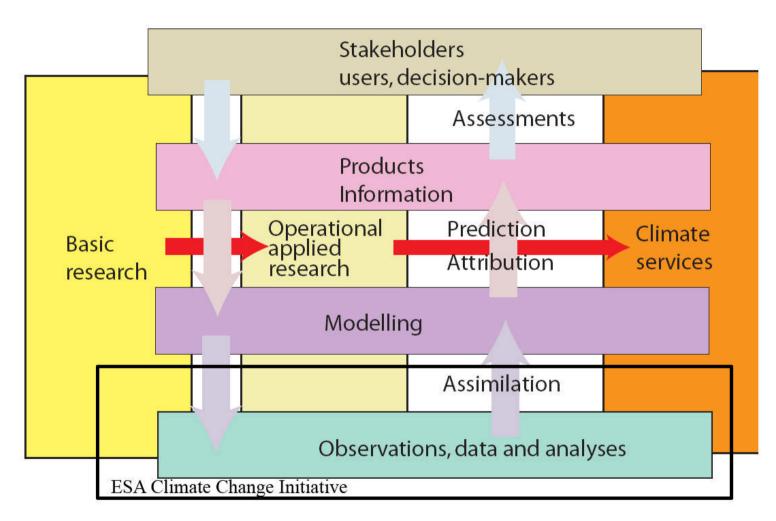
2017+

European Space Agency Agence spatiale européenne 2019+



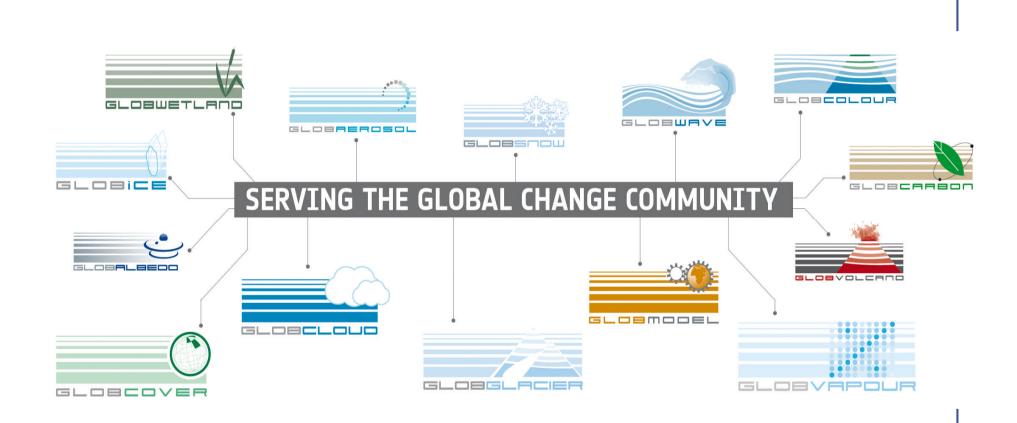
Cesa Improved Observational Capabilities

Sensor Comparision	+Δ
S1 C-band SAR / Envisat ASAR	 Inclusion of strip mode with 5m resolution (e.g. for disaster req.) IWS Interferometric Wide Swath in dual-pol- 250km – 5x20m (instead of 5x20m 100km swath), system will mainly be operated in IWS Increased revisit for repeat pass interferometry (6days based on 2 sat) Better accuracy: 1dB instead of 1.5 – 3.5 dB (3 sigma level)
S2 MSI / SPOT-4 HRV	 Much larger swath: 290km instead of 117km (60km + 60km) Increased revisit: 5days instead of 27 days global coverage Superspectral design instead of multispectral design (13 bands instead of 4 bands) Additional bands in the red edge with high rpectral resolution Dedicated atmos. correction bands
S3 OLCI / Envisat MERIS	 Sun-glint free design Slightly larger swath (1270km instead of 1150km) Higher revisit (1 day instead of 3 days) 6 new bands in the VNIR (21 bands instead of 15 bands)
S3 SLST / Envisat AATSR	 Total overlap with OLCI (750km nadir – 1675km backwards) Higher revisit (1 day instead of 3 days) Increased spatial resolution for VIS bands (500m instead of 1km) 9 bands instead of 7 bands, additional 2 new TIR bands under discussion
S3 SRAL / Envisat RA-2	 dual band acquisition, Ku-band, for height estimate and C-band, for ionopheric correction, a SAR mode with the prime interest to discriminate sea/ice transitions, sea/land transitions in a coastal area or inland water areas. It will allow measuring the topography over all types of surfaces such as sea, coastal areas, sea ice, ice sheets, ice margins, in-land waters with higher coverage and increased accuracy.

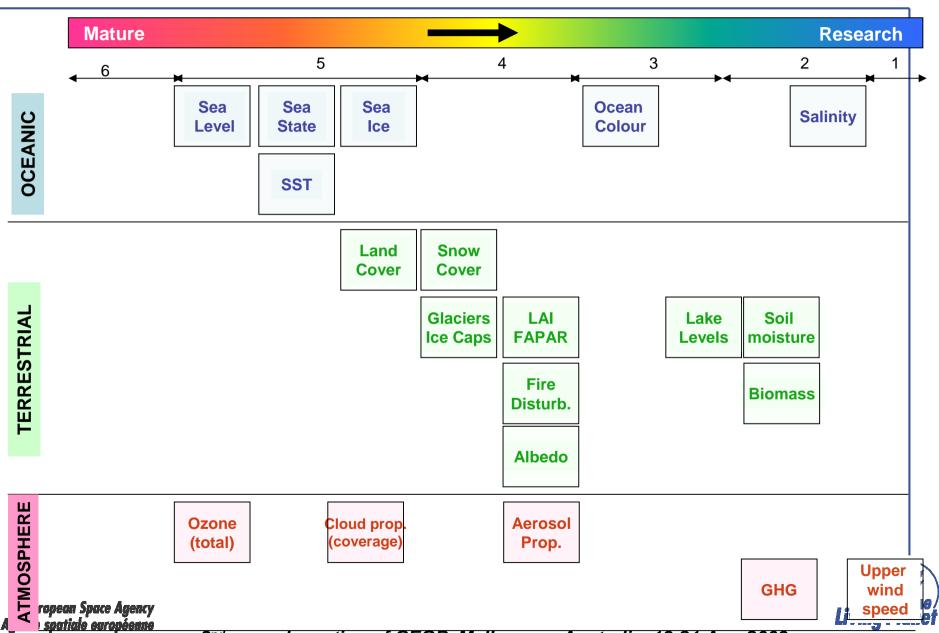


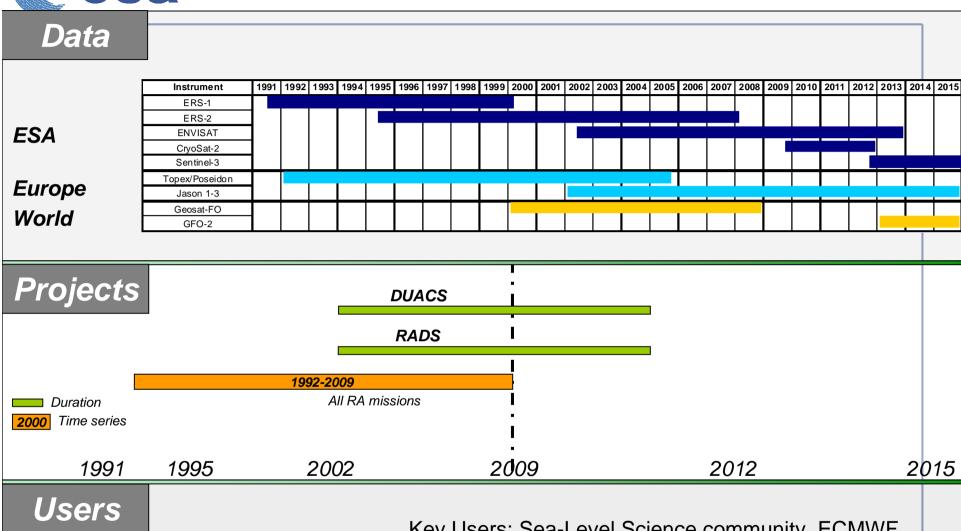
Cesa ESA Initiative on Climate Change

Cesa ESA Initiative on Climate Change


The climate information system

(from K. Trenberth: Observational needs for climate prediction and adaptation, WMO Bulletin 57(1), January 2008) and the position of the ESA climate change initiative within it.


GlobSeries projects (DUE)



CONTRACTION OF SECOND AND LINE OF SECOND AND LINE

Sea Level ECV

DUACS-AVISO User Numbers: >500

Key Users: Sea-Level Science community, ECMWF, Marine Core Service/MyOcean/ MFSPP,

USNAVY, Blue-Ocean (AUS)

RADS User Numbers: >500

500

Key Users: Delft U, Sea-Level Science Community

RADS European Space Agency Agence spatiale européenne

3nd annual meeting of CEOP, Melbourne, Australia, 19-21 Aug 2009

Sea Level ECV

GCOS Requirements for Sea Level:

GCOS Requirement	Current Status	
Accuracy:Spatial resolution:Temporal resolution:Stability:	1 cm Horizontal: 25 km Daily 0.5 mm/decade	2 cm Horizontal: 25 km Weekly 10 mm/decade (1 mm/yr)

Requirements for Sea Level:

FCDR generation

- Evolution in the processing algorithms and chains
- ERS-1, ERS-2 and ENVISAT data re-processed to level 2 in ENVISAT format

Algorithm issues

- ERS-1, ERS-2 based on outdated processing algorithms developed in the 1980s
- ENVISAT auxiliary data outdated
- Algorithm improvement required, both instrumental and geophysical.
- Need multi-mission homogeneity in all fields of the vertical datum equation. The reprocessing shall be designed in cooperation with CNES
- Application of consistent cross-calibration and validation protocols (across all RA missions).
- Development of assimilation of products in climate models.

Linked Projects

- DUACS-AVISO (CNES/PODAAC-NASA)
- RADS (Delft University)

Activity schedule for an ECV

<u>;</u> ;																						\Box								
Activit y No.		Cycle No.	Start	Prep	Lasts	End	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1 Gather		1	2	0		17																								
	Gather	2	18			21																								
		3	22		4	25																								
	UpgradeL	1	2	0																										
2	opgradeL 1B	2	8	0		10																								
	ID	3	14			16																								
	Reproces	1	5	0																										
2	s L1B	2	11			13																								
		3	17			19																								
	Product	1	13	0		16																								
3	Specifica	2	18			21																								
	tion	3	23			26																								
	Algo	1	15	0		18																								
5	Develop	2	19			22																								j
	ment	3	23			26																								j
		4	27			34																								Ì
	ECV Sys	1	17	0		20																								Ì
4	Develop	2	21			24																								Ĺ
	ment	3	25			28																								
	ECV	1	21	0		24																								
4	Re(gener	2	25			28																								
	ation)	3	29			32																								
	ECV	1	22	0		25																								
4	Validation	2	26			29																								
		3	30			33																								
		0	4	0		23																								
5	Assimilate &	1	24	0		27																								
	Feedback	2	28			31																								
		3	32		4	35																								0

European Space Agency Agence spatiale européenne 3 re-processing cycles in 6 years 3nd annual meeting of CEOP, Melbourne, Australia, 19-21 Aug 2009

Sa User assessment and for feedback

- Systematically track changes in climate system & forcings e.g. trends in ECVs
- Assess consistency across related ECVs e.g. sea-level, ice melting, SST
- Analyse global data products (e.g. re-analysis data sets)
- Provide assessment feedback: error analyses, anomalies, inconsistencies
- Test sensitivity of models to new data e.g. Observing System Experiments
- Confront model output with observations to validate model simulation
- Assimilate data into models to constrain simulations

Dedicated user tools will be developed for assessment and feedback

Web-based user access

- access, visualise, share, compare ECV data products

Observation operators

- for users to confront climate model outputs v observations.

Data Assimilation platform

- providing access to a hierarchy of assimilation tools from Kalman Filter to variational methods
- existing assimilation infrastructure (e.g. ECMWF)
- accelerate integration of ECV data sets into models.

Interface

- to distributed computing & modelling resources
- for data sensitivity tests (e.g. OSEs & OSSEs).

