A Multi-model Analysis for CEOP: Surface Fluxes

Michael Bosilovich, David Mocko John Roads and Alex Ruane **Data contributions from BMRC, CPTEC, ECPC, JMA, MSC, NCEP and UKMO And ECMWF and GMAO**

Recently printed in JHM; supported by NASA Modeling, Analysis and Prediction Program

Melbourne Australia, August 2009

Phase I Global Analyses

- Coordinated Enhanced Observing Period EOP 3 and 4, Oct 2002-Dec 2004
- 8 (now 10) global analyses archived at MPI (~5.7TB, native grids/forecst cycles)
- Limited access or use by the science activities in CEOP
- Need to process the data to a more uniform usable format

Multi-model Analysis for CEOP (MAC) Objective

- To homogenize the differences in the data structure, facilitating comparisons and evaluations with independent data
- Focus on the physical processes (especially W&E)
- To produce an ensemble mean and variance data set that may support CEOP science activities
- Hypothesis: Since the input observations are closely related, an ensemble mean should minimize uncorrelated model background error and bias
 - For example: Dirmeyer et al. (2006, GSWP), Philips and Gleckler (2006), Compo et al. (2006)

Multi-model Analysis for CEOP (MAC)

- Each of 8 systems provides 6 hourly analyses, largely the same input observations with different DA methods
 - Some important differences among members
- Unified Dataset
 - 1.25 degree global spatial resolution
 - Monthly, daily, and 6 hourly time series For all 8 (now 10!) members, ensemble mean and std. dev.
 - NetCDF and Grib online, Binary in archive
- Issues in developing the Ensemble
 - Missing data, spatial resolution, temporal averaging, analysis vs. forecast, occasional bugs, P Surface intersecting the topography, variable names

• Global spatial statistics of MAC precipitation compared to GPCP

Full EOP 3-4 time series (Monthly)

• Global spatial statistics of MACTOA OLR compared to SRB

CEOP EOP 3-4 Daily MRB Precipitation

- Precipitation is independent (not assimilated)
- In general, Models have different characters
- Most overestimate high rain events
- Daily spatial correlations highest in the ensemble

Daily Spatial Statistics of MRB Precip

- Each day calculate the spatial correl. and Std. Dev for the MRB
- Time average the daily statistics for presentation
- The daily spatial distribution of the MAC Ensemble Precip has more skill than any single member

Comparison with SEBS ET Vinukollu and Wood

Mississippi Basin

SEBS – Multisensor (CERES AIRS, MODIS) derived land surface evaporation

Zonal and Seasonal SEBS LE

- Multi-model mean compares well in summer seasons, and less so in winter seasons (high bias)
- Still undergoing statistical comparisons

200407 Latent heat flux (W/m^2)

- Just starting to work with Version 2 10 member data set
- Differences from the 10 member ensemble average
- Range of +/-75 Wm⁻² in the monthly mean difference
- ERA Interim is the closest to the ensemble mean

Global Land-only Monthly Series

Latent Heat Flux

Sensible Heat Flux

- The spread of values allows calculation of the uncertainties
- Greenland/Antarctica excluded from land integration

• For NA, most centers fluxes have similar cycles and patterns in the time series, with a with range of means

Global Land Energy

b) Land	LH	SH	RLd sfc	RLu sfc	RSd $_{\rm sfc}$	RSu sfc	RLu _{toa}	RSd toa	RSu _{toa}	Net _{sfc}	Net _{toa}	Precip
BMRC	51	46	326	401	212	40	-	-	-	0.1	-	2.40
CPTEC	55	54	333	401	224	44	253		106	2.3	-15.3	2.46
ECPC-RII	87	-3	322	393	208	42	246	343.2	105	12.4	-7.5	2.81
ECPC-SFM	54	42	313	396	232	45	255	343.2	89	7.4	-0.6	1.95
JMA	53	27	301	391	219	46	260	343.1	95	1.7	-11.9	2.45
MSC	49	43	319	392	206	43	250	342.0	103	-2.6	-10.5	2.34
NCEP	65	23	322	392	208	44	249		101	5.8	-7.2	2.84
UKMO	58	31	328	396	196	38	240	343.4	104	1.2	-0.9	2.64
MAC	59	33	320	395	214	43	250	343.0	100	3.5	-7.8	2.48
Sdev	12.2	18.0	9.9	3.9	11.3	2.7	6.3	0.5	6.1	4.8	5.5	0.28
TFK	39	27	304	383	185	40	232	330.2	113	0.0	-15.6	
SRB/GPCP	-		329	402	192	35	243	343.1				2.30

- Model data are for Jan 2003-Dec 2004
- MAC ensemble average based on 6 hourly means (not the average of global values)
- Sdev is the standard deviation of the models global values
- TFK Trenberth, Fasullo and Keihl (2009, BAMS)
- P in mm/day, others W/m2
- SRB/GPCP 2003-2004, as in the models, TFK for Mar00-May04, GRFA due soon

• Similar wide range of sensible heat fluxes

Results

- Monthly comparisons to precipitation and TOA OLR show the variance of the analyses and that the ensemble generally compares the closest
- Also, noticeable improvements to any individual member has only slight effect on the ensemble
- Selecting only the best skill systems only improve the ensemble results marginally
- Daily precipitation in the MRB is very well represented by the ensemble
- This extends to sub-basins and also daily spatial distribution of precipitation

Surface Fluxes

- Sensible and Latent heat vary greatly from system to system
- May also expose serious deficiencies, but care must be taken in determining outliers (something that is an outlier, may actually be more realistic)
- Further comparisons among surface flux data sets (satellite based and LDAS based)
- Ensemble average may be representative, but still requires validation and improvements
- An ensemble approach allows estimates of uncertainty

CEOP Global Analyses, Melbourne Australia, August 2009

Summary

- Comparing models to a single analysis is clearly inadequate
- The variance in the ensemble appears to be unacceptably high; should be monitored, allowing feedback to centers
 - Still Selective Ensembles have only small improvement
- GMAO and ECMWF contributions have been added to Version 2
- http://gmao.gsfc.nasa.gov/research/ modeling/validation/ceop.php

Data info and download:

http://gmao.gsfc.nasa.gov/research/m odeling/validation/ceop.php

Thank you for your time!

CEOP Global Analyses, GEWEX SSG, Irvine CA, 21 January 2009

Implications of this Work

- GEWEX Objectives 1 & 2: A data set that can be used to better understand W&E cycles and contributes to the RHPs and focus studies
- Ken Mitchell (NCEP) and Paul Earnshaw (UKMO) have copied the data and is using it in their system evaluations
- Kun Yang (WEBS) and W. Guo (S-A) have copied the data for use in their contributions to CEOP

Next Steps

- Provides impetus to continue or expand the efforts tested in the CEOP Global modeling group
- Un-Acronymed Project in 2013: An effort to collect <u>and</u> synthesize a multitude of international operational analyses for weather and ultimately climate model development (e.g. AMIP or IPCC)
 - Need commitments from NWP centers, not just data, but formatting, and documentation
 - Can or will TIGGE data be augmented to include physical process data used in GEWEX studies?
 - Can we enhance the archive site to handle the reformatting of the model analyses and forecasts? Probably with input from the contributing centers (PCMDI utilities?)

CEOP Global Analyses, GEWEX SSG, Irvine CA, 21 January 2009

 Benefits for Weather and Climate
About the quality of current reanalyses, plus uncertainty estimates (useful for metrics)

- Community would have access to centralized analyses of weather data for research
- NWP centers would gain valuable information regarding the multitude of output diagnostics from external research/validation
- Would allow operational centers that cannot produce a reanalysis to contribute to a climate record (in time) CEOP Global Analyses, GEWEX SSG, Irvine CA, 21 January 2009

Available Variables

		Centers									
Description	<u>Units</u>	BMRC	<u>CPTEC</u>	ECPCRII	ECPCSFM	<u>JMA</u>	<u>MSC</u>	<u>NCEP</u>	<u>ukmo</u>		
Surface Pressure	Pa	SURFPsfc	PRESsfc	PRESsfc	PRESsfc	PRESsfc	SURFPsfc	PRESsfc	SURFPsfc		
Mean Sea Level Pressure	Pa	MSLPsfc		PRMSLmsl	PRESmsl				PRMSLmsl		
Surface Air Temperature	ĸ	TMP2m	TMP2m	TMP2m	TMP2m	TMP2m	TTSUsfc	TMP2m	LOWT2m		
Surface Skin Temperature	K	SURFTsfc	SURFTsfc	TMPsfc	TMPsfc		SURFTsfc	TMPsfc	SURFTsfc		
Surface Air Moisture	kg kg⁻¹	SPFH2m	RH2m	SPFH2m	SPFH2m	SPFHhbl	HUSUsfc	SPFH2m	LOWSH2m		
Surface Eastward Wind	m s⁻¹	UGRD10m	UGRD10m	UGRD10m	UGRD10m	UGRD10m	UUSUsfc	UGRD10m	TENUS10m		
Surface Northward Wind	m s⁻¹	VGRD10m	VGRD10m	VGRD10m	VGRD10m	VGRD10m	VVSUsfc	VGRD10m	TENVS10m		
Precipitation	kg m⁻² s⁻¹	APCPsfc	APCPsfc	PRATEsfc	PRATEsfc	PRATEsfc	PRsfc	PRATEsfc	APCPsfc		
Convective Precipitation	kg m⁻² s⁻¹			CPRATsfc	CPRAT sfc				ACPCPsfc		
Surface Runoff	kg m ⁻²		WATRsfc	WATRsfc	WATRsfc		N0sfc	WATRsfc	WATRsfc		
Liquid equivalent snow depth	kg m ⁻²	SNODsfc		WEASDsfc	WEASDsfc		I5sfc	WEASDsfc			
Latent Heat Flux	W m⁻²	LHTFL sfc	LHTFLsfc	LHTFLsfc	LHTFLsfc	LHTFL sfc	AVsfc	LHTFLsfc	LHTFL sfc		
Sensible Heat Flux	W m⁻²	SHTFL sfc	SHTFLsfc	SHTFLsfc	SHTFLsfc	SHTFL sfc	AHsfc	SHTFLsfc	SHTFLsfc		
Surface Incoming Shortwave	W m⁻²	DSWRFsfc	DSWRFsfc	DSWRFsfc	DSWRFsfc	DSWRFsfc	N4sfc	DSWRFsfc	TDSWSsfc		
Surface Incoming Longwave	W m⁻²	DLWRFsfc	DLWRFsfc	DLWRFsfc	DLWRFsfc	DLWRFsfc	ADsfc	DLWRFsfc	TDLWSsfc		
Surface Reflected Shortwave	W m⁻²	USWRFsfc	USWRFsfc	USWRFsfc	USWRFsfc	USWRFsfc	N4sfc-ASsfc	USWRFsfc	TU SW Ssfc		
Surface Outgoing Longwave	W m⁻²	ULWRFsfc	ULWRFsfc	ULWRFsfc	ULWRFsfc	ULWRFsfc	ADsfc-AIsfc	ULWRFsfc	TUL WSsfc		
TOA Longwave Outgoing	W m⁻²		ULWRFtoa	ULWRFtoa	ULWRFtoa	ULWRFtoa	ARsfc	ULWRFtoa	TULWTtoa		
TOA Shortwave Incoming	W m ⁻²			DSWRFtoa	DSWRFtoa	DSWRFtoa	ABsfc		TDSWTtoa		
TOA Shortwave Outgoing	W m⁻²		USWRFtoa	USWRFtoa	USWRFtoa	USWRFtoa	AUsfc	USWRFtoa	TUSWTtoa		
Total Cloud Cover	(0-1)		TCDCclm	TCDCclm	TCDCclm	TCDCsfc	TCDCsfc	TCDCclm	TCDCsfc		
Total Column Water Vapor	kg m ⁻²	PWATclm	PWATclm	PWATclm	PWATclm		IHsfc	PWATclm			
Total Column Condensed Water	kg m⁻²					CWATprs	IEsfc	CWATclm			
Q850	kg kg⁻ ¹	SPFHprs	SPFHprs	SPFHprs	SPFHprs		SPFHprs	RHprs	RHprs		
T850	К	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs		
U850	m s⁻¹	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs		
V850	m s⁻¹	VGRDprs	VGRDprs	VGRDprs	VGRDprs	VGRDprs	VGRDprs	VGRDprs	VGRDprs		
H850	m	HGTprs	HGTprs	HGTprs	HGTprs	GPprs	HGTprs	HGTprs	GPprs		
Q700	kg kg⁻¹	SPFHprs	SPFHprs	SPFHprs	SPFHprs		SPFHprs	RHprs	RHprs		
T700	К	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs	TMPprs		
U700	m s ⁻¹	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs	UGRDprs		
v700 CEOP Global Ana	l jnse fs, GE	VGRDprs	V GRDprs	VGRDprs	VGRDprs	V GRDprs	VGRDprs	VGRDprs	VGRDprs		

CA, 21 January 2009

CEOP Global Analyses, GEWEX SSG, Irvine

CA, 21 January 2009

July 2004 Precipitation: Taylor Diagram

CA, 21 January 2009

