Processes Affecting the Development of Hydroclimatic Extremes in the Canadian Prairies

Kit Szeto and Collaborators Climate Research Division, Environment Canada

The Canadian Prairies

- Major agricultural region that is frequently affected by hydrometeorological extremes such as droughts or floods
- Because of its unique geographical location, water cycling in the Prairies is governed by the complex interplay between many physical processes
- Poorly understood and hard to predict

Objectives of Study

- Assess the mean water and energy budgets for the Canadian Prairies
- To better understand the processes that affect the flow of water and energy into and through the region and their redistribution within the region
- To better understand processes that contribute to the development of hydroclimate extremes in the region

Ensemble Mean Annual Cycles of SRB Water and Energy Budgets

Figure 3. Mean annual cycle of ensemble (NCEP-R2, ERA-40, CMC and CRCM) basin-average budgets for (a) atmospheric energy, (b) atmospheric water, (c) surface energy and (d) surface energy.

Correlations between various July Prairie water budget terms from NARR

July	E	Р	SM	МС
E	1.00			
Р	0.17	1.00		
SM	0.88	0.12	1.00	
МС	-0.20	0.82	-0.20	1.00
Obs P	0.22	0.95	0.19	0.78

JJA mean circulation at 850 hPa

NCEP/NCAR Reanalysis 850mb Geopotential Height (m) Climatology 1968-1996 NOAA/ESRL Physical Sciences Divisio 65N 60N 55N 50N 45N 40N 35N 30N 25N 20N 130₩ 1200 1100 1000 8Å# 7ó₩. ດກໍພ Jun to Aug: 1420 1440 1460 1480 1500 1520 1540 1560 1580

Mean subsiding and diverging lower level northwesterly flow over the Prairies and the climatological GPLLJ does not extend into the region —> moisture flux convergence and mean southerly moisture transports into the Prairies must be accounted for by eddy transports

Hypothesis: Cyclonic systems over the mid-west northern U.S. play a significant role in governing the warm-season water transport & cycling in the Canadian Prairies

MERIC

Arctic Circle

Synoptic Patterns Affecting Summer Moisture Flux and P over the Prairies

Timeseries of June water Budgets from NARR and ERA40

Composites of atmospheric conditions associated with June days with precip in the highest 2 percentiles over the eastern Prairies (1950-2005)

NCEP-reanalysis Precipitation (top left) 1000 hPa Geopotential Height (top right) 500 hPa Geopotential Height(bottom left) Composites of atmospheric conditions associated with June days with precip in the highest 2 percentiles over the western Prairies

NCEP-reanalysis Precipitation (top left) 1000 hPa Geopotential Height (top right) 500 hPa Geopotential Height(bottom left)

The June 2002 Extreme Rain Event – A flood within an extreme drought: Synoptic Settings

NCEP reanalysis – NOAA CDC

500 hPa Z Jun 9 2002

MSLP Jun 9 2002

June 2002 event : Synoptic scale feedbacks that affected storm growth and propagation

Interactions of storm circulations with the mountains to produce orographic precip and associated latent heating -> enhancement of +ve PV anomaly of the COL -> Phase locking of the SL, COL and cloud + precip features to the Rockies -> mutual-amplification and quasi-stationary storm features and longevity of precip

June 2002 event: Storm- and cloud-scale feedbacks

Differential net mid-to-upper level diabatic heating and associated lower-level P' focused and enhanced the synoptic scale N-S pressure gradients near the national border and thus the PELLJ and the enhanced orographic precip

The extreme rain event brought an extended break to the drought over the SW Prairies – A "break point" in the evolution of the drought?

Timeseries of Monthly PDSI averaged over northern Montana Source: NOAA/OAR/ESRL PSD