CEOP Objective #1:

GEWEX Objective #1

Produce consistent research quality data sets complete with error descriptions of the Earth's energy budget and water cycle and their variability and trends on interannual to decadal time scales, for use in climate system analysis and model development and evaluation.

Specific Technical Issues

- 1. Developing an integrated hydroclimate data set that can be used to answer the CEOP main scientific questions.
- 2. Developing the capability to handle and disseminate a large amount of data from diverse sources
- 3. Analyzing and comparing with model simulations this diverse data to understand the underlying mechanisms and model deficiencies.

2011-2012: DELIVERABLE: A "state-of-the-art" suite of global energy and water cycle products complete with error bars for closing the global water and energy budgets for the period 1980 to 2010.

CEOP Objective #2:

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?
- iv. How do aerosols affect the hydroclimate?
- v. Does knowledge of water isotopes help us to understand the water cycle?

Understanding the contributions of water and their highly coupled non-linear interactions in regulating feedbacks to the climate system.

CEOP Objective #3:

GEWEX Objective #3

Improve the predictive capability for key water and energy cycle variables and feedbacks through improved parameterizations to better represent hydrometeorological processes, and determine the geographical and seasonal characteristics of their predictability over land areas.

Associated Science Questions

vi. Can we simulate and predict the hydroclimate cycle?

Specific Technical Issues

4. Assimilating and integrating the data with newly developed models.

Provide a final review of the success of GEWEX in improving parameterization at operational Numerical Weather Prediction (NWP) and climate modeling centers and its impact on the predictive capabilities for key energy and water cycle variables, including hydrological prediction

CEOP Objective #4:

GEWEX Objective #4:

Undertake joint activities with operational hydrometeorological services, related Earth System Science Partnership Program (ESSP) projects like the Global Water System Project (GWSP), and hydrological research programs to demonstrate the value of GEWEX research, data sets and tools for assessing the consequences of climate predictions and global change for water resources.

Associated Science Questions

vii. What is the benefit of this increased knowledge about the hydroclimate for society?

Specific Technical Issues

5. Transferring CEOP methodologies to other regions, sectors, and applications .

Demonstrate benefits of improved hydrometeorological predictions for water resources.

Seasonal Variation of the Soil Moisture Tibetan Plateau Africa

Comparison LES - Observations

Initiation and development of deep convection in the afternoon

20:00LT Thu 9 Jul 1998 t=396000.0 s (**:00:00)

Heat Budget in the Atmosphere over the Tibetan Plateau

based on the NCEP/NCAR RA climatology.

1D simulations

- 1.6000 - 1.5000

-1.4000 -1.3000

- 1.2000 - 1.1000 - 1.0000 - 0.9000 - 0.8000

-0.7000

- 0.6000 - 0.5000

- 0.4000 - 0.3000 - 0.2000

-0.1000

0.0000 0.1000 0.2000 0.3000

0.4000

0.5000 0.6000 0.7000 0.8000

0.9000

1.0000 1.1000 1.2000 1.3000 1.4000

1.5000

Heating rate K/h

Wind and Air Temperature Fields over the Tibetan Plateau based on the NCEP/NCAR RA climatology.

WAM Conceptual model

- Saharan Heat Low (HL) ⇒ 2 convergent fluxes
 Northerly wind (Harmattan) ITD ← Monsoon Flux
- 2. Baroclinicity \rightarrow African Easterly Jet 600-700 hPa \rightarrow AEWs (instable)
- 3. Convection: favorable conditions ~AEJ: CAPE+Shear+Dry Air
- **4.** Upper Trop: Anticyclonic Divergent Flux \rightarrow acceleration TEJ+SubT Jet
- 5. Dry intrusions from midlatitudes + Subsidence above the HL

1st Asian Water Cycle Symposium, Tokyo, Nov. 2005

1st Task Team Meeting, Bangkok, Sep. 2006

GEOSS Asian Water Cycle Initiative (AWCI)

To promote integrated water resources management by making usable information from GEOSS, for addressing the common water-related problems in Asia.

Uniqueness

- A River Basin of Each Country
- Observation Convergence
- Interoperability Arrangement
- Data Integration
- Open Data & Source Policies
- Capacity Building
- Early Achievements

GEOSS Asian Water Cycle Initiative (AWCI) 19 Member Countries

"Recent Signs of Water-related Disasters"

		BD	BT	CB	IN	ID	JP	MY	MM	MN	NP	PK	PH	CE	TH	UZ	VT
Flood	13																
Typhoon/Cyclone	5																
Localized torrential rainfall	3																
GLOF	1																
Snowmelt Flood																	
Avalanche	1																
Glacier	3																
Landslide/Mudflow	6																
Bank Erosion Tsunami																	
Drought	5																
Water Logging	1																
Cold Wave	1																
Climate Change	8																

GEOSS Asian Water Cycle Initiative (AWCI) 19 Member Countries 18 River Basins for Initial Demonstration

Data status as of 2009/04/10

	Country	Basin Name	Basic Info.	Raw DataUpload		Quality	Control	Meta Initial Re	data gistration	Metadata Update	Remarks
			Complete	Ready	Complete	Ready	Complete	Ready	Complete	Complete	
1	Bangladesh	Meghna	09/01/20	09/01/20 09/04/02							Number of Station were changed (09/04/02)
2	Bhutan	Punatsangchhu	09/01/20	09/01/22	09/02/03	09/02/05	Δ	09/02/05			
3	Cambod i a	Sangker	08/10/30	09/02/06	Δ			08/11/04			
4	India	Seonath	08/07/22	08/08/22	0						
5	Indonesia	Mamberamo	09/01/20	09/01/20	0						
6	Japan	Tone	08/10/30	08/12/26	08/12/26	09/01/18	Δ	08/12/26			
7	Korea	Upper Chungju-dam	08/08/05	08/08/05	08/10/02	08/11/02		08/11/04			
8	Lao PDR	Sebangfai									
9	Malaysia	Langat	09/02/06	09/02/06 09/02/11							Station location changed (09/02/11)
10	Mongolia	Selbe	08/07/22	08/08/22							
11	Myanmar	Shwegyin	09/01/22	09/01/22	09/03/05						
12	Nepal	Bagmati	08/11/10	08/11/12	09/01/17						
13	Pakistan	Swat	08/07/22 09/04/01	08/08/22 09/04/02							Basin Name/ location was changed (09/04/02)
14	Philippines	Pampanga	08/08/05	08/08/22	0						
15	S <mark>ri L</mark> anka	Kalu Ganga	08/08/05	08/08/22	09/01/20						
16	Thailand	Mae Wang	08/08/05	08/09/01	09/01/31						
17	Uzbekistan	Chirchik— Okhangaran	08/08/05	08/09/01 09/04/02	0						Number of Station were changed (09/04/02)
18	Vietnam	Huong	08/07/22	08/09/04	0						

YY/MM/DD : Handling Date O : Full Data provided by offline Completely Finished

△ : Partial Data provided by offline

Partially Finished

GEOSS Asian Water Cycle Initiative (AWCI)

19 Member Countries18 River Basins for Initial Demonstration

GEOSS Asian Water Cycle Initiative (AWCI) 19 Member Countries 18 River Basins for Initial Demonstration

7. Tibet Mongolia Uzbekistan Japan Korea ⊃akistan China Nepal Bhutan India Bangladesh Vietnam Myanmar Laos ²hilippines hailand Sri Lanka Cambodi[,] Malavia Indonesia

GEOSS African Water Cycle Symposium Tunis, 6-8, Jun., 2009

109 participants from
16 countries
4 UN Agencies
2 Space Agencies
2 GEO Secretary

12 from Africa2 from Europe1 form North America1 from Asia

Moisture Availability

Tchad •Lake Chad variability

Cameroun Climate Modification Tunisia Water for agriculture Met service Data & Information system for water Res. Drought analysis Water pollution Sustainable water management Ground water & its salinization Water diversion management system Water balance

<u>Kenya</u>

 Downscaling of climate/Met info. for river management Flood management & mitigation

