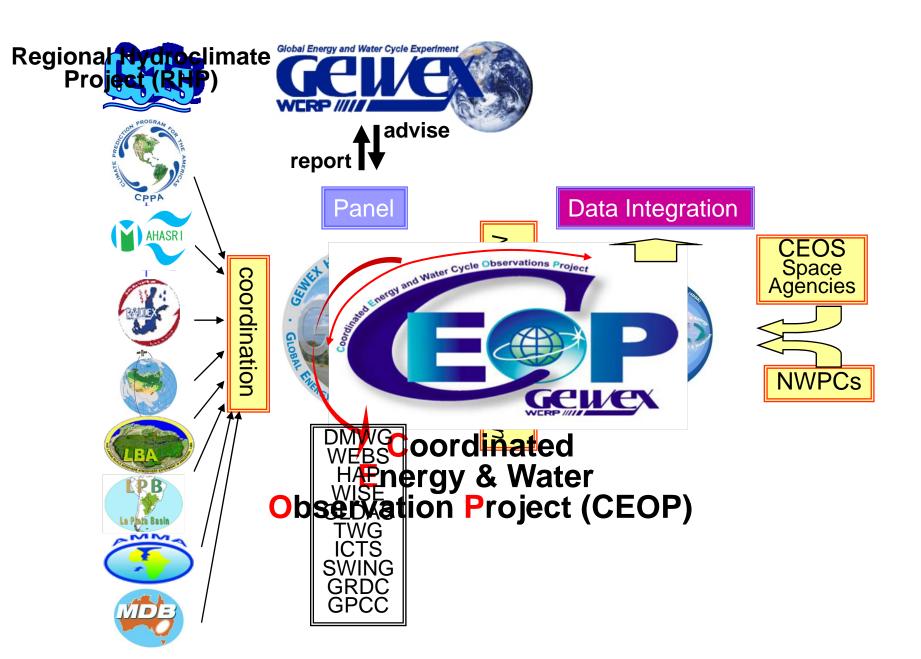
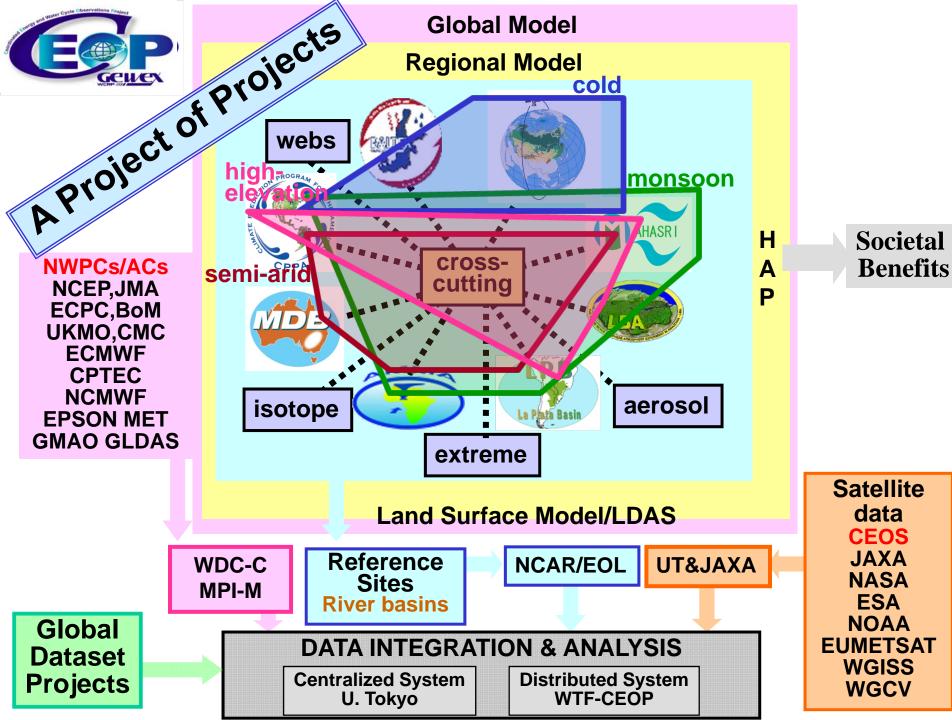

Dr. John Roads, Research Professor at the University of California, San Diego, Scripps Institute of Oceanography, Co-Chair of the GEWEX Coordinated Energy and Water Cycle Observations Project (CEOP), and former Chair of the GEWEX Hydrometeorology Panel (GHP), died on Saturday, 21 June, following a 2-year battle with leukemia.


John completed the merger of GHP and CEOP successfully, and made out a strategic implementation plan for CEOP by encouraging the members of the drafting team. His excellent vision and enthusiastic contribution led us up to this stage of the CEOP implementation. We are fortunate to have known John and will miss him deeply.


We would like to make a memorial web page of our friend and colleague John Roads to pay a tribute to his unique personality as well as to his numerous achievements in the science field and successful leadership of GHP and CEOP. We would very welcome and appreciate for your contribution to this web page by offering your personal memorial essays and photos of John.

History of CSEs/RHPs, GHP and CEOP

History of CSEs/RHPs, GHP and CEOP

Strategic Implementation

Goals

To understand and predict continental to local-scale hydroclimates with applications.

Strategic Implementation

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?
- iv. How do aerosols affect the hydroclimate?
- v. Does knowledge of water isotopes help us to understand the water cycle?
- vi. Can we simulate and predict the hydroclimate?
- vii. What is the benefit of this increased knowledge about the hydroclimate for society?

Strategic Implementation

Specific Technical Issues

- 1. Developing an integrated hydroclimate data set that can be used to answer the main scientific questions noted above.
- 2. Developing the capability to handle and disseminate a large amount of amount of data from diverse sources
- 3. Analyzing and comparing with model simulations this diverse data to understand the underlying mechanisms and model deficiencies.
- 4. Assimilating and integrating the data with newly developed models.
- 5. Transferring CEOP methodologies to other regions, sectors, and applications.

CEOP Objective #1:

GEWEX Objective #1

Produce consistent research quality data sets complete with error descriptions of the Earth's energy budget and water cycle and their variability and trends on interannual to decadal time scales, for use in climate system analysis and model development and evaluation.

Specific Technical Issues

- 1. Developing an integrated hydroclimate data set that can be used to answer the CEOP main scientific questions.
- Developing the capability to handle and disseminate a large amount of data from diverse sources
- 3. Analyzing and comparing with model simulations this diverse data to understand the underlying mechanisms and model deficiencies.

2011-2012: DELIVERABLE: A "state-of-the-art" suite of global energy and water cycle products complete with error bars for closing the global water and energy budgets for the period 1980 to 2010.

NWPCs/ACs

NCEP,JMA ECPC,BoM UKMO,CMC ECMWF CPTEC NCMWF EPSON MET GMAO GLDAS

WDC-C MPI-M Reference Sites River basins NCAR/EOL

UT&JAXA

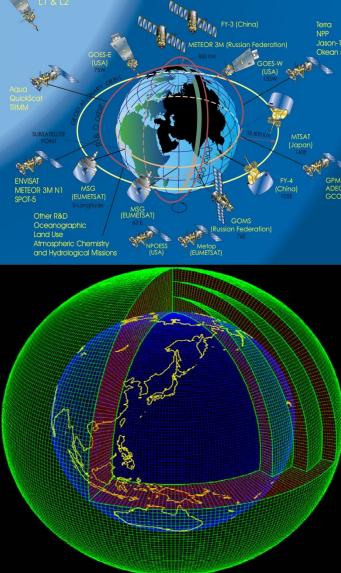
Global Dataset Projects

DATA INTEGRATION & ANALYSIS

Centralized System U. Tokyo

Distributed System WTF-CEOP

Satellite
data
CEOS
JAXA
NASA
ESA
NOAA
EUMETSAT
WGISS
WGCV

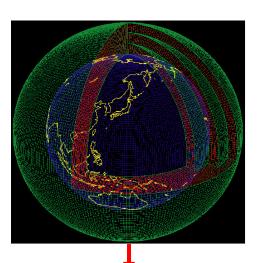


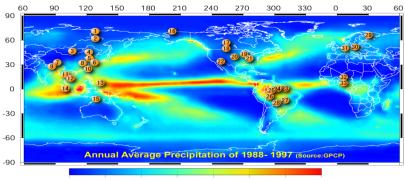
Coordinated Enhanced Observing Period Three Unique Capabilities

Convergence of Observations

A Prototype of the Global Water Cycle Observation System of Systems

International Cooperation for the Global Coverage

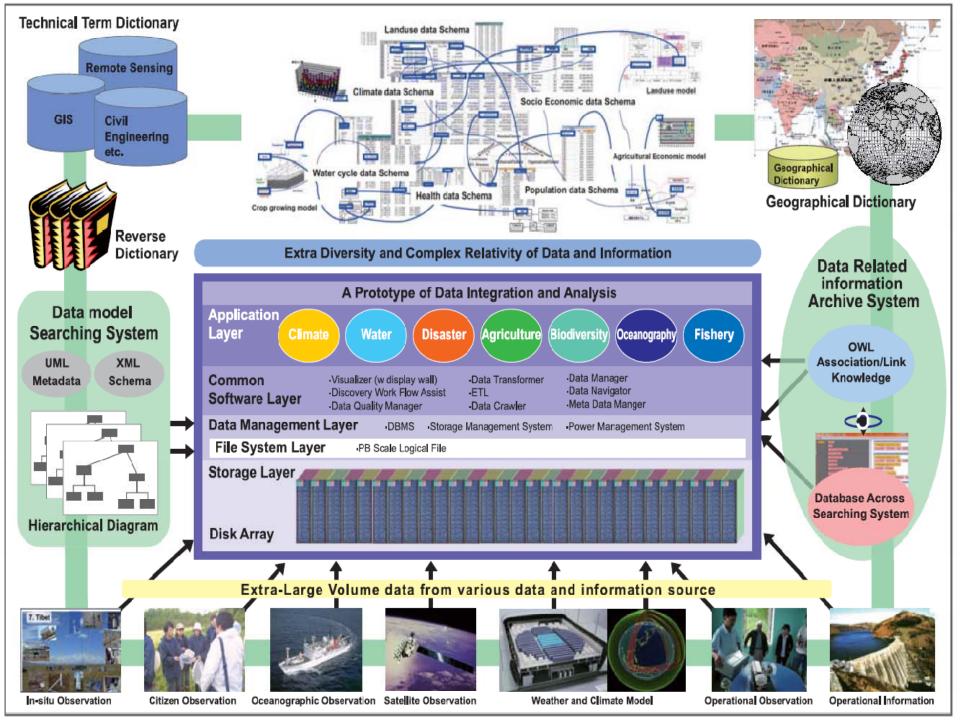




Coordinated Enhanced Observing Period Three Unique Capabilities

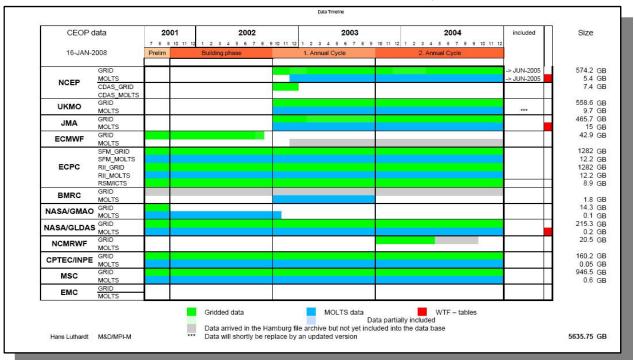
Interoperability Arrangement

A well organized collecting, processing, storing, and disseminating shared data, metadata and products



In-Situ Data Archiving Center at NCAR (National Center for Atmospheric Research) of USA

Model Output Data Archiving
Center at the World Data
Center for Climate, Max-Planck
Institute for Meteorology of
Germany


Data
Integrating/Archiving
Center at University of
Tokyo and JAXA of
Japan

Model Data Content

(as of 1 February 2008)

The most recent version of the data status (time line) can be found from:

http://www.mad.zmaw.de/wdc-for-climate/ceop/

2007 30th Formal Telecon (30 Jan) 2006 29th Formal Telecon (14 Nov) 28th Formal Telecon (12 Sept) 27th Formal Telecon (11 July) 26th Formal Telecon (16 May) 25th Formal Telecon (28 Mar) 24th Formal Telecon (17 Jan) 2005 23rd Formal Telecon (08 Nov) 22nd Formal Telecon (20 Sep) 21st Formal Telecon (19 Jul) 20th Formal Telecon (25 May) 19th Formal Telecon (31 Mar) 18th Formal Telecon (18 Jan) 2004 17th Formal Telecon (7 Dec) 16th Formal Telecon (5 Oct) 15th Formal Telecon (10 Aug) 14th Formal Telecon (15 Jun) 13th Formal Telecon (27 Apr) 12th Formal Telecon (25 Feb) 11th Formal Telecon (9 Jan) 2003 10th Formal Telecon (3 Dec) 9th Formal Telecon (28 Oct) 8th Formal Telecon (17 Sep) 7th Formal Telecon (30 Jul) 6th Formal Telecon (2 Jun) 5th Formal Telecon (28 Apr) 4th Formal Telecon(11 Mar) 3rd Formal Telecon (3 Feb) 2nd Formal Telecon (17 Dec) 2002 1st Formal Telecon (15 Nov)

CEOP SFC Data Status and Quality

The colors represent the CEOP Data Quality Flags (see definitions) as follows: green=G, yellow=D, red=B, black=I, gray=U. Note that the time period covered varies from station to station. If a station does not measure any FLX parameters it is not included in this table.

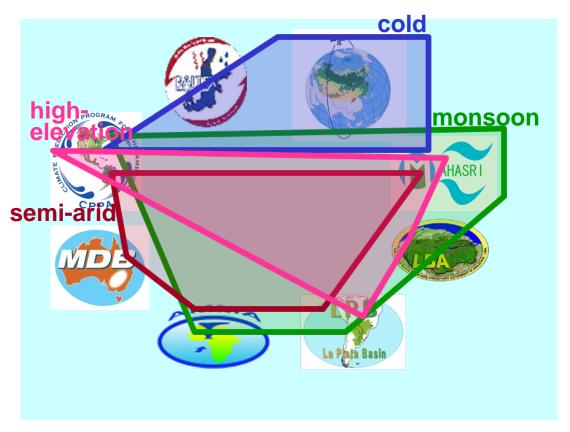
For the Soil Temperature and Moisture Data Status and Quality summary click here. For the Meteorological Tower Data Status and Quality summary click here.

For the Flux Data Status and Quality summary click here.

RHP	Reference Site	Station	Station	Air Temp	Dew Point		Specific Humidity	Wind	Wind Dir	U Wind	V Wind	Precip	Snow	in Short	Out Short	in Long	Out	Net Rad	Skin Temp	In PAR	Out PAR
BALTEX	Cabauw	Cabauw	Pressure	MAN	W/W/	Humidity	Humidity	Speed		india	Missilian	visalie.	Depth None		SHOIL	hivana Ana	Long		- Tellip	None	None
BALTEX	Lindenberg	Falkenberg	WANT	^	W/W/	A.A.	W	Spinding		handen	Maritan		1 1			W	WA.		,AA	AA	الماليا
BALTEX	Lindenberg	Forest	(military)	^^	^		٨٨	None	None	None	None		None	A A		^^	*		^^	None	None
BALTEX	Norunda	Norunda	When	-West	phologogical	male	in a similar	nd limi	NW	Mijirelikini	relien	None	None			TVII)	-week		None		
BALTEX	Sodankyla	Oberseratory Site A	Hiripan	**	**	W	W	diami	of the file	Helique	MARRIAN		M			None	None	None	None	None	None
RHP	Reference Site	Station	Station Pressure	Air Temp	Dew Point	Relative Humidity	Specific Humidity	Wind Speed	Wind Dir	U Wind	V Wind	Precip	Snow Depth	In Short	Out Short	In Long	Out Long	Net Rad	Skin Temp	In PAR	Out PAR
CliC (MAGS)	BERMS										No d	lata availa	ble yet.								
RHP	Reference Site	Station	Station Pressure	Air Temp	Dew Point	Relative Humidity	Specific Humidity	Wind Speed	Wind Dir	U Wind	V Wind	Precip	Snow Depth	In Short	Out Short	In Long	Out Long	Net Rad	Skin Temp	In PAR	Out PAR
CPPA (GAPP)	Bondville	Bondville		*	M	MAKAI	W		Walls	-	***	الأوادا	None		Labor	*	**		**		سيا
CPPA (GAPP)	Ft. Peck	Ft. Peck	HAVAW	* paper pop	Maddidaly	THYM	Horasonal	MAN	MI	ANNIA	(min highly		None	boot	أست	期期時後	HAMMA	Month I	White Wally	bud	السيا
CPPA (GAPP)	Mt. Bigelow	Mt. Bigelow									No d	lata availa	ble yet.								
CPPA (GAPP)	Oak Ridge	Oak Ridge	wildly like	riongian	Monthle	MANA	Marija	saldinia	1000	watth	wiching		None	lind)	Distill	Manager	Manyide	hash			named fil
RHP	Reference Site	Station	Station Pressure	Air Temp	Dew Point	Relative Humidity	Specific Humidity	Wind Speed	Wind Dir	U Wind	V Wind	Precip	Snow Depth	In Short	Out Short	In Long	Out Long	Net Rad	Skin Temp	in PAR	Out PAR
CPPA (GAPP)	SGP (ARM)	C1 Lamont	None	None	None	None	None	None	None	None	None	None	None	14		14	144	14	~~	None	None
CPPA (GAPP)	SGP (ARM)	El Lamed	-	*	W	Hidital	W	dud.	gilli jelic Kalpanova		hátaibh		None				**		None	None	None
CPPA (GAPP)	SGP (ARM)	E2 Hillsboro	None	None	None	None	None	None	None	None	None	None	None				M	-	None	None	None
CPPA (GAPP)	SGP (ARM)	E3 Le Roy	11-41-11	*	~		M	the state of	MAGINE Magine	Mathia	Welley		None			~~		1	None	None	None
CPPA (GAPP)	SGP (ARM)	E4 Plevna	14-44-4	M	**		M		1965/PU M (495/44	Marine	philip		None	44		M			None	None	None
CPPA (GAPP)	SGP (ARM)	E5 Halstead		*	*	les alter	W	with.	Halleyses Etyphysia	indention			None	44		M	*		None	None	None
CPPA (GAPP)	SGP (ARM)	E6 Towanda		~	~~		10		or Marie Pall Million Pall	infunctions			None			^	M		None	None	None
CPPA (GAPP)	SGP (ARM)	E7 Bk Falls		M	W		W		ME	Ağıstiyal	MANAGE		None		4	W	M	AA	None	None	None

CEOP Reference Site Data Set Availability (as of 1 February 2008)

CSE	Reference Site	EOP-3	EOP-4	CSE	Reference Site	EOP-3	EOP-4
BALTEX	Cabauw			GAPP	Bondville		
	Lindenberg				Ft. Peck		
	Norunda				Mt. Bigelow		
	Sodankyla				Oak Ridge		
CAMP	Chao-Phraya River				ARM SGP		
	Equatorial Island			LBA	Brasilia		
	Himalayas				Caxiuana		
	No ma	gic, k	out ju	st pa	atient eff	orts!	
	Mongolia				Rondonia		
	Northeast Thailand				Santarem		
	Northern South			MAGS	BERMS		
	China Sea			MDB	Murrumbidgee		
	Siberia Taiga				Tumbarumba		
	Siberia Tundra			ARM	North Slope of		
	Tibet				Alaska		
	Tongyu				Tropical Western Pacific		
	Western Pacific Ocean						
AMMA	Niamey	SF, Precip	SF, Precip		Complete	Partial	
	Oueme	SF, Precip	SF, Precip				


CEOP Objective #2:

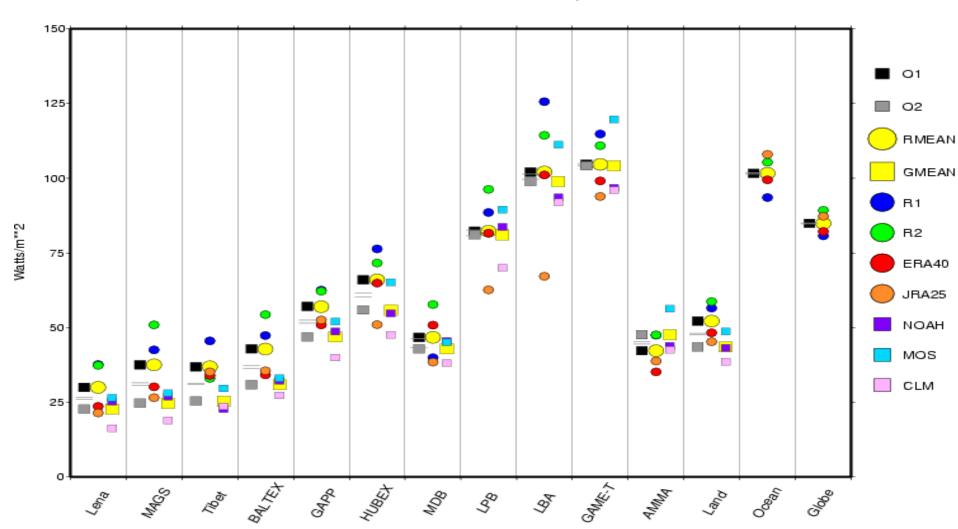
GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

Associated Science Questions

i. What are the average hydroclimate conditions over various regions and seasons?

CEOP Objective #2:

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

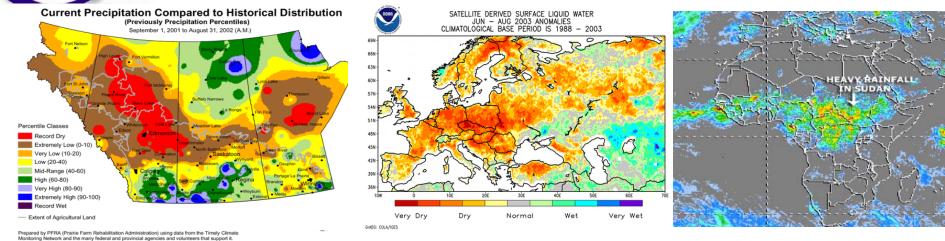

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?

Average hydroclimate conditions

1986-95 Annual Means, LE

CEOP Objective #2:

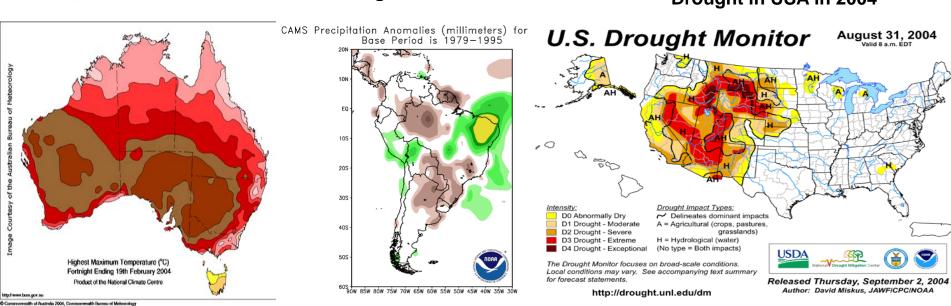

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?

Extreme Events Impact Analysis Project

Drought in Canada in 2002


Heat Wave in Europe in 2003

Flood in Africa in 2003

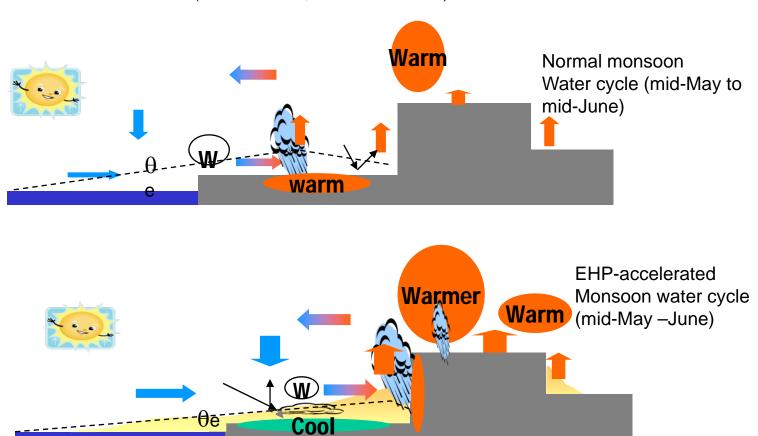
Drought in Australia in 2003

Drought and Flood in Brazil in 2003

Drought in USA in 2004

CEOP Objective #2:

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.


Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?
- iv. How do aerosols affect the hydroclimate?

The Elevated Heat Pump (EHP) hypothesis

NASA

(Lau et al. 2006, Lau and Kim 2006)

EHP postulates:

- a) warming and moistening of the upper troposphere over the Tibetan Plateau
- b) an advance of the rainy season in northern India/Napal region in May-June
- c) In June-July, the increased convection spreads from the foothills of the Himalayas to central India, resulting in an intensification of the Indian monsoon.

CEOP Objective #2:

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?
- iv. How do aerosols affect the hydroclimate?
- v. Does knowledge of water isotopes help us to understand the water cycle?

The Stable Water Isotope Inter-Comparison Group (SWING)

The isotope cross cut study (ICCS)

SWING Project Members (alphabetical order):

Pradeep Aggarwal (IAEA)

Josephine Brown (U. Reading)

Laurence Gourcy (IAEA*)

Ann Henderson-Sellers (ANSTO)

Georg Hoffmann (LSCE)

Kimpei Ichiyanagi (FORSGC)

Maxwell Kelley (LSCE)

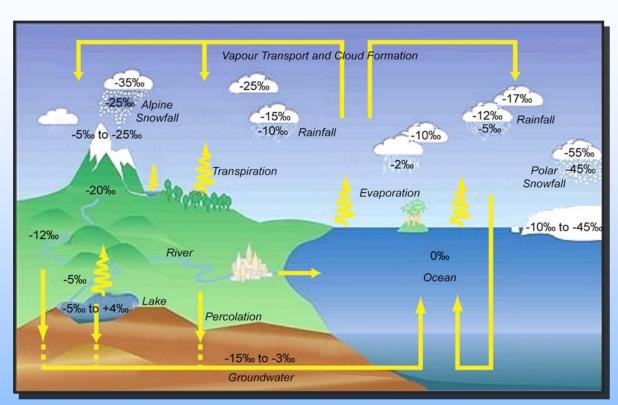
David Noone (U. Colorado)

John Roads (UCSD)

Gavin Schmidt (NASA-GISS)

Kristof Sturm (ANSTO)

Julia Tindall (U. Bristol)

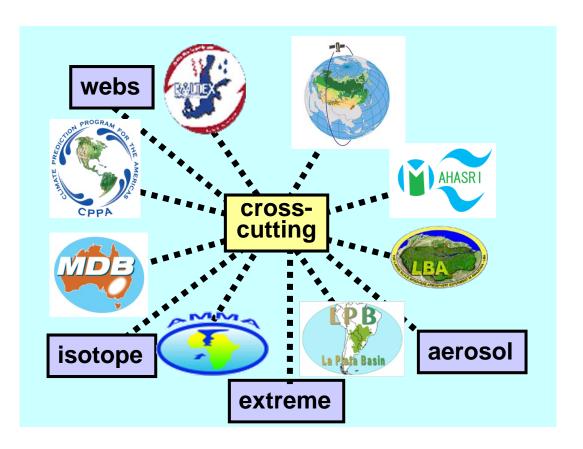

Paul Valdes (U. Bristol)

Kei Yoshimura (U. Tokyo)

Martin Werner (MPI-BGC)

Vyacheslav Zakharov (Ural State U.)

(* now at BRGM, France)



CEOP Objective #2:

GEWEX Objective #2 Enhance the understanding of and quantify how energy and water cycle processes contribute to climate feedbacks.

Associated Science Questions

- i. What are the average hydroclimate conditions over various regions and seasons?
- ii. How does water and energy flow into and through individual regions as well as being redistributed within these regions by local mechanisms?
- iii. How do extremes occur and what is their role in the hydroclimate?
- iv. How do aerosols affect the hydroclimate?
- v. Does knowledge of water isotopes help us to understand the water cycle?

Understanding the contributions of water and their highly coupled non-linear interactions in regulating feedbacks to the climate system.

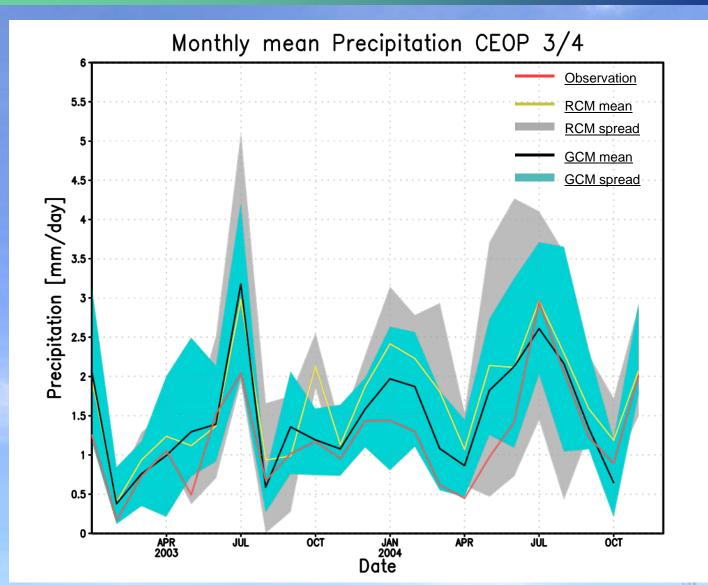
CEOP Objective #3:

GEWEX Objective #3

Improve the predictive capability for key water and energy cycle variables and feedbacks through improved parameterizations to better represent hydrometeorological processes, and determine the geographical and seasonal characteristics of their predictability over land areas.

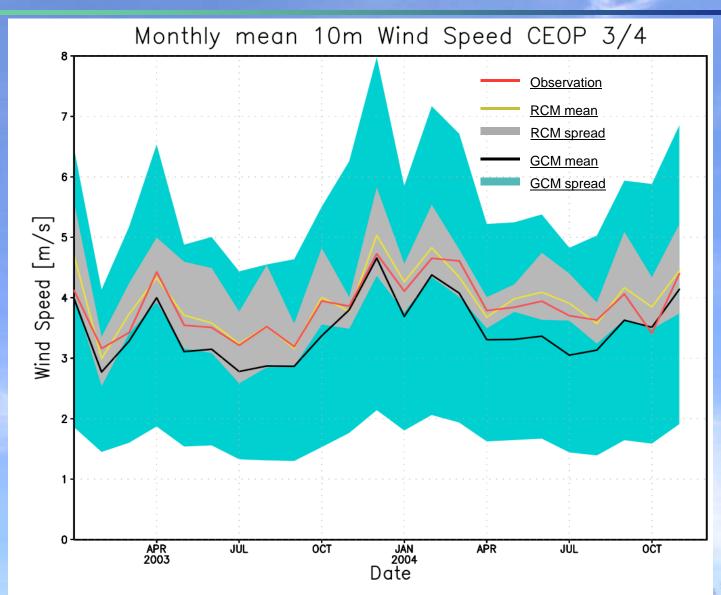
Associated Science Questions

vi. Can we simulate and predict the hydroclimate cycle?


Specific Technical Issues

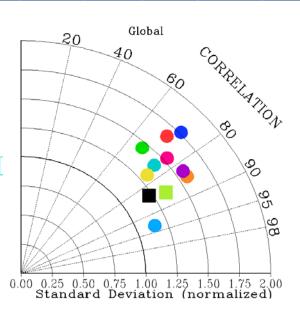
4. Assimilating and integrating the data with newly developed models.

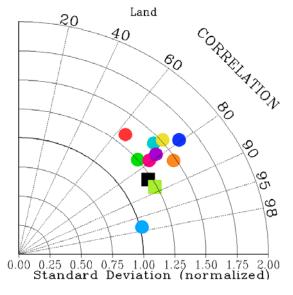
Provide a final review of the success of GEWEX in improving parameterization at operational Numerical Weather Prediction (NWP) and climate modeling centers and its impact on the predictive capabilities for key energy and water cycle variables, including hydrological prediction

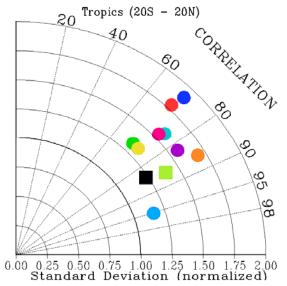


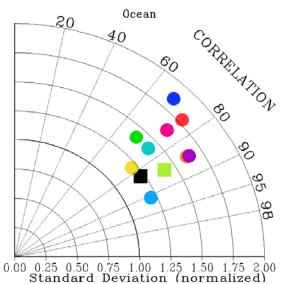
Lindenberg (Precipitation)

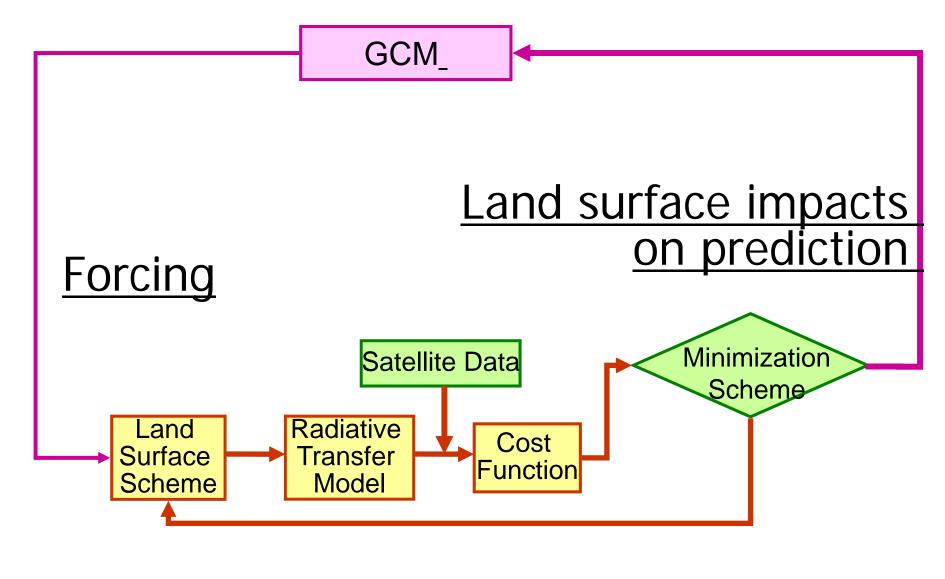
Lindenberg (10m Wind)

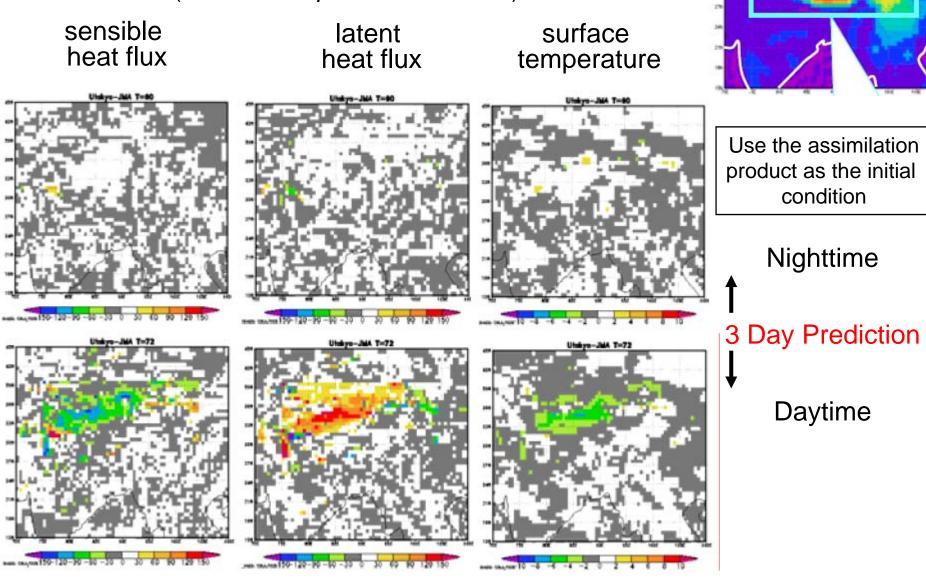

Multi-model Analysis for CEOP (MAC)


- Each of 8 systems provides 6 hourly analyses, largely the same input observations with different
 - Some important differences among members
- Output: Ensemble mean and variance
 - 1.25 degree global spatial resolution
 - Monthly, daily, and 6 hourly time series For all 8 members, ensemble mean and std. dev.
 - Considering NetCDF format, CF compliant
- Issues in developing the Ensemble
 - Missing data, spatial resolution, temporal averaging, analysis vs. forecast, occasional bugs, P Surface intersecting the topography, variable names


July 2004 Precipitation: Taylor Diagram


- GEOS5
- BMRC
- CPTEC
- ECPC-RII
- ECPC-SFM
- JMA
- MSC
- NCEP
- UKMO
- MAC
- CMAP


v. GPCP



LDAS

Impacts of the Tibet surface initial conditions on the GCM prediction of the surface parameters

(UT-JMA Cooperative Research)

Global Model

Regional Model

NWPCs/ACs

NCEP,JMA ECPC,BoM UKMO,CMC ECMWF CPTEC NCMWF EPSON MET GMAO GLDAS

Land Surface Model/LDAS

WDC-C MPI-M Reference Sites River basins

NCAR/EOL

UT&JAXA

Global Dataset Projects

DATA INTEGRATION & ANALYSIS

Centralized System U. Tokyo

Distributed System WTF-CEOP

Satellite
data
CEOS
JAXA
NASA
ESA
NOAA
EUMETSAT
WGISS
WGCV

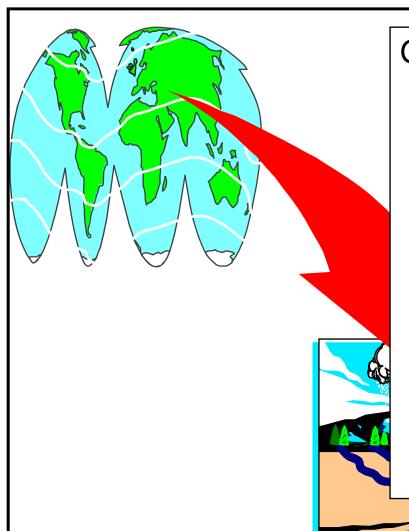
CEOP Objective #4:

GEWEX Objective #4:

Undertake joint activities with operational hydrometeorological services, related Earth System Science Partnership Program (ESSP) projects like the Global Water System Project (GWSP), and hydrological research programs to demonstrate the value of GEWEX research, data sets and tools for assessing the consequences of climate predictions and global change for water resources.

Associated Science Questions

vii. What is the benefit of this increased knowledge about the hydroclimate for society?


Specific Technical Issues

5. Transferring CEOP methodologies to other regions, sectors, and applications.

Demonstrate benefits of improved hydrometeorological predictions for water resources.

Implementation Strategy

GHP/Hydrologic Application Project

- -- develop and test probabilistic hydrologic forecasts procedures
- demonstrate how to produce reliable hydrologic ensemble predictions and their use for water resources
- evaluate the importance of hydrologic initial conditions and determine hydrologic sensitivity to climate change
- -- demonstrate the usefulness of GEWEX data products for related activities like GWSP, HEPEX, IAHS/PUB, CEOP/WISE, (etc.)

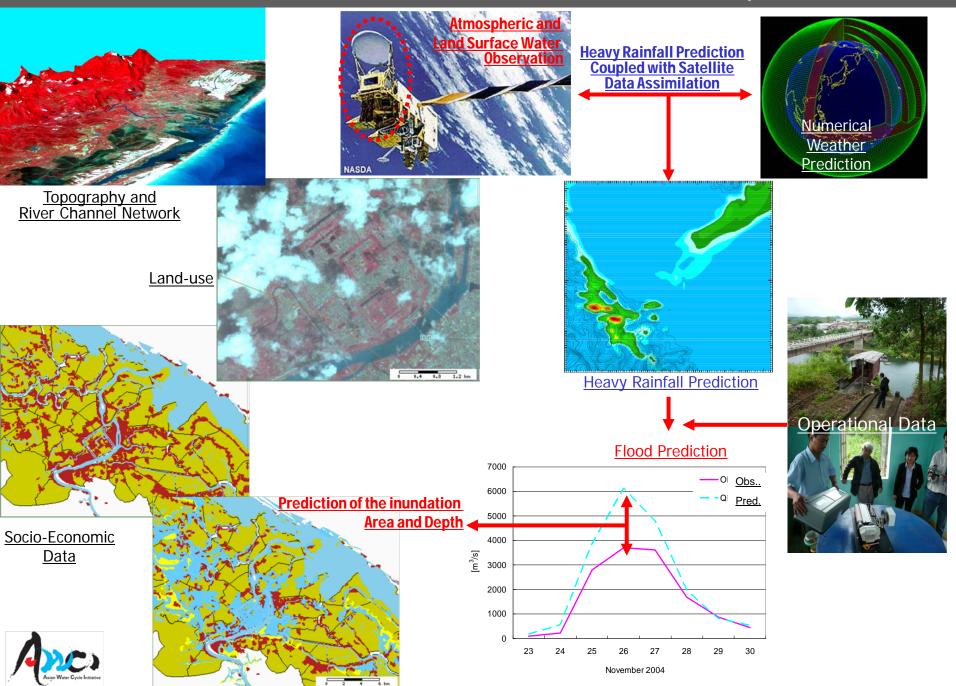
1st Asian Water Cycle Symposium 1st Task Team Meeting, Bangkok, Sep. 2006 1st Capacity Building Workshop, Sep. 2006 Asian Water Cycle Symposium, Tokyo, Jan. 2007 1st GEOSS AP Symposium, Tokyo, Jan. 2007 ternational Coordination Group Meeting, Bali, Sep. 2007 Asian Water Cycle Symposium, Beppu, Dec. 200

GEOSS Asian Water Cycle Initiative (AWCI)

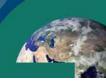
To promote integrated water resources management by making usable information from GEOSS, for addressing the common water-related problems in Asia.

Uniqueness

- A River Basin of Each Country
- Observation Convergence
- Interoperability Arrangement
- Data Integration
- Open Data & Source Policies
- Capacity Building
- Early Achievements

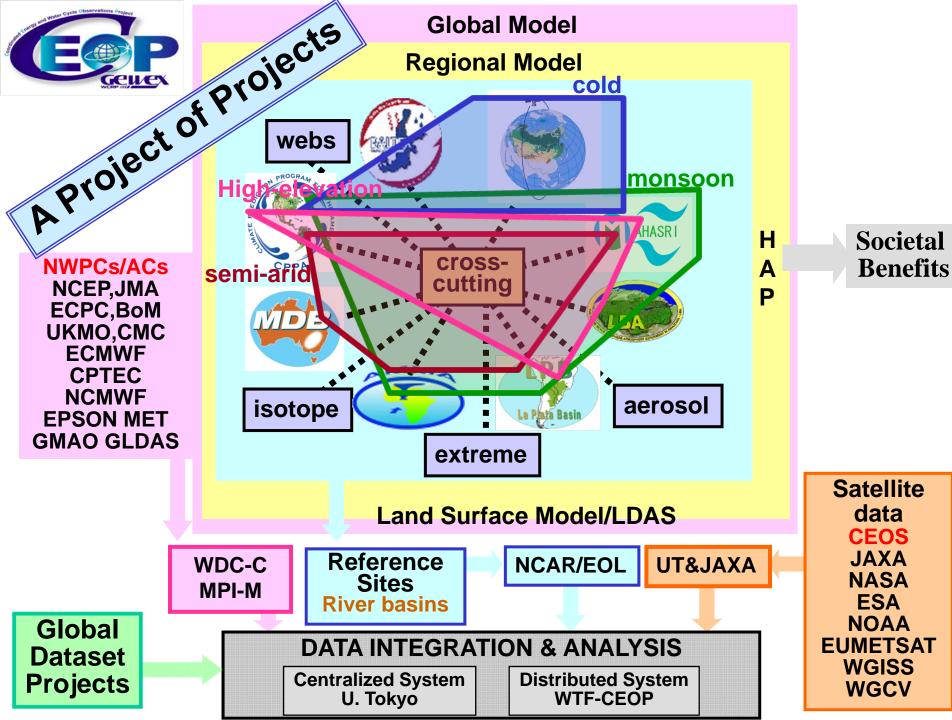


GEOSS Asian Water Cycle Initiative (AWCI)


18 River Basins for Initial Demonstration

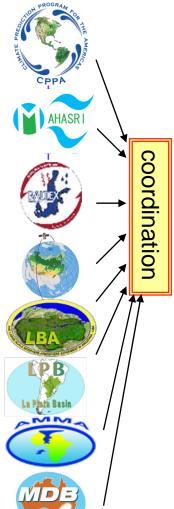
GEOSS/AWCI Flood Evacuation Instruction System

G8 Toyako Hokkaido Summit 7-9 July 2008 Declaration


To respond to the growing demand for Earth observation data, we will accelerate efforts within the Global Earth Observation System of Systems (GEOSS), which builds on the work of UN specialized agencies and programs,

in priority areas, climate change and water resources management,

by strengthening observation, prediction and data sharing.


We also support capacity building for developing countries in earth observations and promote interoperability and linkage with other partners.


© GEO Secretariat

Regional Hydroclimate Projects (RHPs)

GEWEX/CEOP RHP CRITERIA

TECHNICAL CRITERIA

- •Cooperation of an NWP center for provision of atmospheric and land surface data assimilation.
- •Atmospheric-hydrologic models for studying transferability and climate variability.
- •Mechanism for collecting and managing adequate hydrometeorological data sets.
- •Participation in the open international exchange of scientific information and data.
- •Interactions with hydrologic services and related groups
- •Commitment of adequate resources and personnel.
- •Evaluation of GEWEX global data products.
- •Contributions to CEOP in situ, remote sensing, and model output databases.

SCIENTIFIC CRITERIA

- •Observe, simulate, and predict diurnal, seasonal, annual and interannual variability.
- •Determine climate system variability and critical feedbacks.
- •Demonstrate improvements in predictions of water-related climate parameters.
- •Demonstrate the applicability of techniques and models for other regions.
- •Assess the human impact on hydroclimate variations, including vulnerability to climate change

"overlap", "duplication", "big eater", , , ,

We should be modest to those criticisms.

BUT

do not hesitate to accept them.

They express a certain part of CEOP,

a science for knowledge integration.

By promoting communication, coordination and cooperation,

let's change the criticisms to applauses,

and contribute to science and societal benefits.