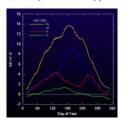


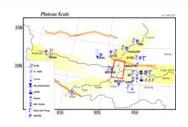
REFERENCE SITE DESCRIPTION

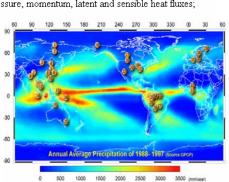
1D Site:

Near surface + surface + sub-surface (Atmospheric sounding * is highly desirable)

2.5D Site:

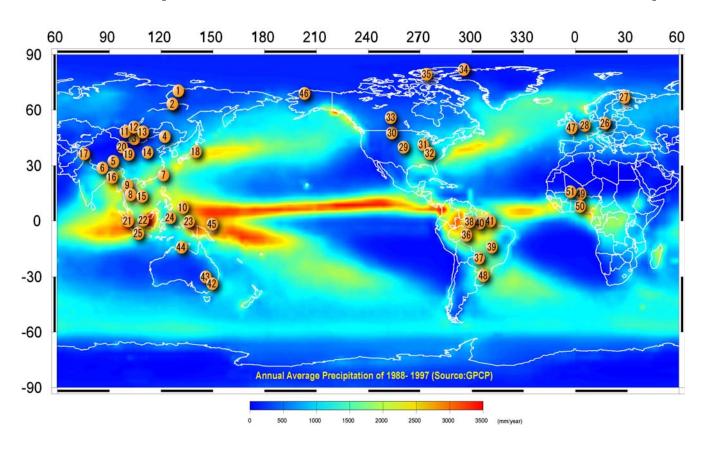

A few 1D sites + surface heterogeneity with an area of at least 100km²


3D Site:


1D sites network (+3D system) or 2.5D site + 3D atmosphere ** with an area of about 10⁴ km²

The terminology in summarizing these sites is used in the following manner:

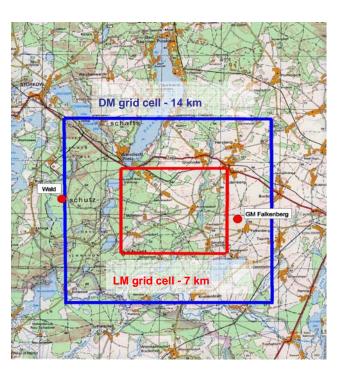
- Sub-surface (0 to -1m): Soil moisture and temperature profile, heat conduction and soil characteristics;
- Surface (0 to +2m): Four-component radiation, PAR, surface temperature, surface soil moisture, precipitation, vegetation type characteristics, snow,
- Near surface(+2 to +10m): Temperature, specific humidity and wind speed profiles, surface pressure, momentum, latent and sensible heat fluxes;
- * Atmospheric soundings: Radiosonde, wind profile, LIDAR microwave rain radar
- **3D atmosphere: 3D Doppler radar, cloud radar, aerosonde aircraft.



EP Proposed CEOP Phase 2 Reference Site Map

Proposed CEOP Phase 2 Reference Sites

CSE/ RHP	D 6 "	5 (a); W					CSE/	5 ("	D 4 0% W				
	Ref#	Ref. Site Name	Latitude		Longitude	RHP	Ref#	Ref. Site Name	Latitude		Longitude		
	1	Eastern Siberian Tundra	71.617	N	128.750	Е		26	Lindenberg	52.170	N	14.120	E
	2	Eastern Siberian Taiga	62.255	N	129.618	Е	BALTEX	27	Sodankyla	67.370	N	26.633	Е
	3	Mongolia	45.743	N	106.264	Е		28	Cabauw	51.970	N	4.930	Е
	4	Tongyu	44.416	N	122.867	Е		29	ARM/Southern Great Plains	36.610	N	97.490	W
	5	Tibet	31.370	N	91.900	Е	CPPA	30	Fort Peck	48.310	N	105.100	W
	6	Himalayas	27.959	N	86.813	Е	/GAPP	31	Bondville	40.010	N	88.290	W
	7	Northern South China Sea - Southern Japan	24.967	N	121.181	E		32	Oak Ridge	35.960	N	84.290	W
	8	Chao-Phraya River	18.400	N	99.470	Е		33	BERMS (MAGS)	53.990	N	105.120	W
мана	9	North-East Thailand	14.466	N	102.379	Е	CliC	34	Alert, Nunavut	82.467	N	62.500	w
	10	Western Pacific Ocean	7.452	N	134.476	Е		35	Eureka, Nunavut	79.995	N	85.813	W
	11	Mongol Arvayheer	46.246	N	102.798	Е		36	Rondonia	10.080	s	61.930	W
	12	Mongol Nalaikh	47.766	N	107.336	Е		37	Pantanal	19.560	s	57.010	W
SRI/(C AMP)	13	Northern Mongolia	47.213	N	108.742	Е	LBA	38	Manaus	2.610	s	60.210	W
^···· ,	14	Downstream of the Yellow River	36.649	N	116.054	Е	LBA	39	Brasilia	15.930	s	47.920	W
	15	Central Vietnam	16.033	N	109.185	Е		40	Santarem	3.020	s	54.970	W
	16	Northeast Bangladesh	24.900	N	91.893	Е		41	Caxiuana	1.710	s	51.510	W
	17	Pakistan Karakorum Network	35.728	N	76.286	Е	MDB	42	Tumbarumba (tower)	35.660	s	148.150	Е
	18	Tsukuba	36.110	N	140.100	Е	IMIDE	43	Murrumbidgee (soil moisture, tempera	35.116	s	146.375	Е
	19	Lanzhou	35.946	N	104.137	Е		44	ARM/Tropical West Pacific (Manus)	2.060	s	147.430	Е
	20	Heihe River Basin	39.500	N	100.000	Е	Others	45	ARM/Tropical West Pacific (Darwin)	12.430	s	130.890	Е
	21	Western Maritime Continent	0.200	s	100.300	Е	Others	46	ARM/Northern Slope of Alaska	71.320	N	156.620	W
	22	Central Maritime Continent	0.000	s	109.400	Е		47	Chilbolton, UK	51.150	N	1.433	w
ľ	23	Eastern Maritime Continent	1.200	s	136.100	Е	LPB	48	Cruz Alta	28.600	s	53.400	w
	24	Northern Maritime Continent	1.500	N	124.900	Е		49	Niamey	13.530	N	2.660	Е
	25	Southern Maritime Continent	6.400	s	106.700	E	АММА	50	Ouémé	9.692	N	1.662	Е
								51	Gourma	15.300	N	1.500	w

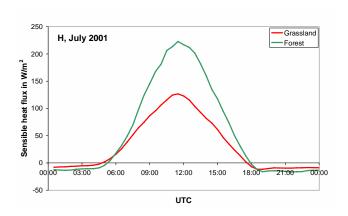


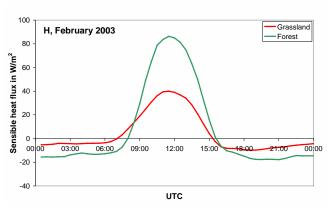
REFERENCE SITE PARTICIPATION REQUIREMENTS

All Reference Sites must:

- Provide commitment for participation
- Provide required metadata/site descriptions
- Abide by CEOP Data Policy
- Perform format conversions and quality control*
- MUST MEET DELIVERY SCHEDULE!
 - * May use MAHASRI (CAMP) Data System

Heterogeneous landscape around Lindenberg




- ~ 45 % agriculture
- ~ 43 % forest
- ~ 7 % water

Differences forest - grassland (IV): Sensible heat flux

... up to 100 %

Lindenberg Reference Site

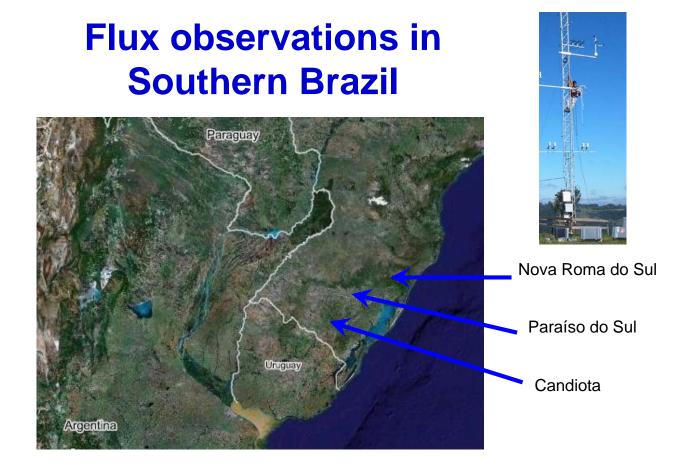

REFERENCE SITE PARTICIPATION REQUIREMENTS

All Reference Sites must:

- Provide commitment for participation
- Provide required metadata/site descriptions
- Abide by CEOP Data Policy
- Perform format conversions and quality control*
- MUST MEET DELIVERY SCHEDULE!

^{*} May use MAHASRI (CAMP) Data System

NEESPI: The Northern Eurasia Earth Science Partnership Initiative



The world's largest cold region.

Area stores more than half of the Earth's terrestrial carbon.

Large vulnerable natural and agricultural ecosystems, and extensive and variable dry land areas exist in the region.

Potential Sites are currently being identified or installed

Baseline Surface Radiation (

Measurements

Downward IR *

• Upwelling irrad.

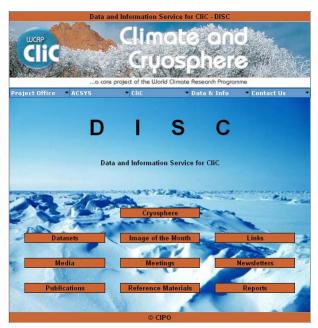
• PAR & UV

• Upper air met.

*all sites

Goal:

To acquire the highest possible quality, globallydiverse, surfacebased radiation measurements for climate research.

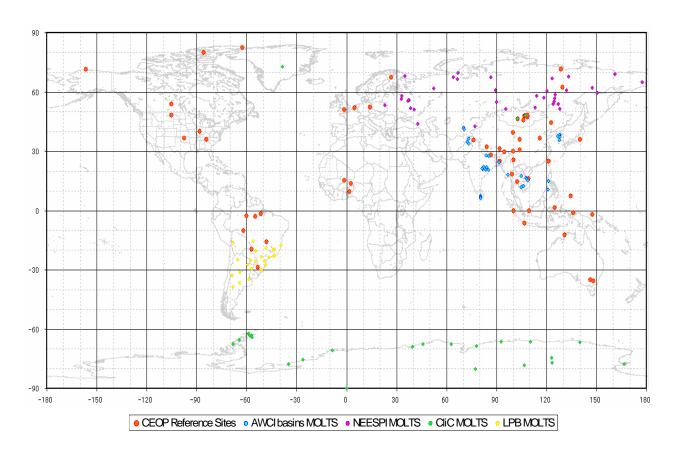

Network Status

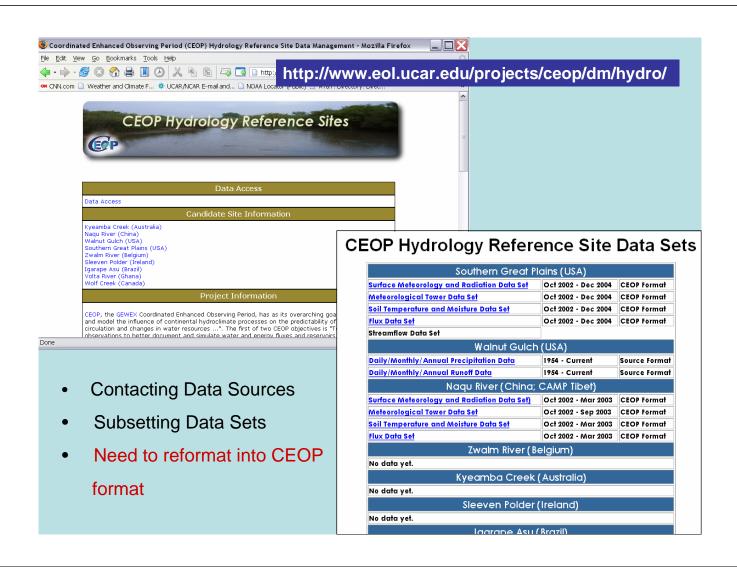
- 2561 station-months of data
- 34 archiving sites + 15 potential Potential eventual Siberian site
- Zurich/ETHZ archive extended
- New Brazilian network
- New site SIRTA France

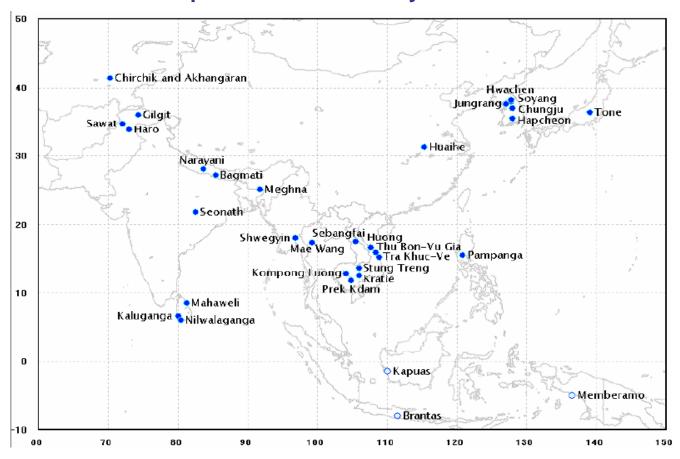
- 2 new Canadian sites proposed
- Progress on a China site(s)
- GCOS invitation
- July 2004 Mtg. in Exeter U.K.

http://BSRN.ETHZ.CH

CEOP and CliC COORDINATION ACTIVITIES


COLLABORATION FOR IPY

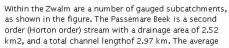

- Cold Weather Precip Questionnaire
- Link CEOP Data to DISC
- Common metadata (ISO19115)
- Shared Archives (Interoperability) AON, Buoys, field project data Satellite data/products
- Additional Reference Sites
- **Entrain Cryospheric Community**
- CEOP/CliC Joint Session (Paris, 2006)



Distribution of MOLTS points proposed for New CEOP

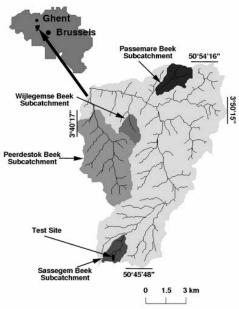
Proposed Asian Water-cycle Basins

Country	Ba Bu	Ca	CI	h In	ls.	Ja	Κo					La	Мо	Му	Ne		Pa			Ph	Sr			Th	Uz	VI			18
Reference basin	Me	Se	S	h Ma	Ma	То	So	Hw	Ch	Ju	На	Se	SE	Sh	Na	Ва	GI	Ha	Sa	Pa	Ma	Ka	NI	Ma	CA	Hu	Th	Tr	29
Basin Desccription																													
Basin Maps	1	1		1 1	1	1	1	- 1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	25
Basin Pictures	0	1				1	1	1	1	1	1	0	1	0			1	1	1	1	1	1	1		1	1	1	1	19
River Network Maps	1	1		1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	28
Soil	0	1				1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1		1	1	18
Land Use/Vegetation	0	1			1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1		1	1	0	1	19
River Constructions	0	1				1	1	1	1	1	1	0		0						1	1	1	1		1	1	1	1	15
HYDROLOGICAY																													
Streamflow	1	1		1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	24
Reservoir	1	1				1	1	1	1	1	1	1	1	0			1	1	1	1	1	1	1		1	0	0	0	18
Groundwater Table	i	0)	1		_		_				ō	ī	0			ō	0	ō	ō	0	ō	ō		ī	0	0	0	4
water quality	-	-		-								-	-	-			-	-	-	-	-	-			-	-	-	-	
SUB-SURFACE																													
Soil Temperature	1	1		1		0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	0	1	1	1	0	1	12
Soil Moisture	ō					ō	_		ŏ		ŏ	ō	i	ŏ	•	•	ŏ		ŏ	ŏ	ō	ō	ŏ	i	i	i	ĭ	i	8
SURFACE	-	_	_	-		-	-	_	-	_	-	-	_	-			-	-		-	-	_	_	_	_		_	_	
Air Temperature	1	1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	24
Humidity	î	i				i	i	- î	î	- î	i	î	i	î	i	î	i	i	î	i	î	- î	ő	i	i	î	i	î	24
Wind	i	i				i	i	i	i	- î	i	i	i	i	i	i	÷	i	i	i	i	i	ŏ	i	i	i	i	i	24
Pressure	i	i				i	i	- 1	i	- 1	÷	•	- 1	i	- 1	i	÷	•	i	- 1	i	÷	ň	÷	- 1	i	÷	÷	23
Precipitation	i	i		1		÷	i	- 1	i	- 1	i	1	- 1	i	- 1	i	÷	•	i	- 1	i	- 1	ĭ	÷	- 1	i	÷	i	26
Snow	ō	0				•	•	- 1	•	- 1	- 1	å	- 1	•	÷	i	- :	å	•	ò	å	å	å		- 1	å	å	0	12
Skin Temperature	0	1				0	0	0	0	å		v	i				ò	•	ò	0	0	0	ň	٠,	0	0	0	0	3
Upward Shortwave	ő	1				0	0	_	0	0	0		i				ĭ	ĭ	1	ő	0	0	0	i	0	0	ĭ	0	7
	0	1				1	0	_	0	0	0		i				i		i	0	0	0	0	i	0	0	- :	0	8
Downward Shortwave	0	1				0			0		0		i				0	•	0	0	0	0	0	i	0	0	1	0	4
Upward Longwave	•	0											i					•						÷			- ;	0	4
Downward Longwave	0					0			0		0	1					0	•	0	0	0	0	0	1	0	0	1	•	
Upward PAR	0	0				0			0	0	0		1				0	_	0	0	0	0	0		0	0		0	1
Downward PAR	0	0				0	_	_	0	0	0		0				0	_	0	0	0	0	0		0	0	0	0	0
Net Radiation	1	0				0	0	0	0	0	0	0	1				0	_	0	0	0	0	0	1	0	0	1	0	4
Sensible Heat Flux	0	0				0		0	0	0	0	0	1				0	_	0	0	0	0	0	1	0	0	0	0	2
Latent Heat Flux	0	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	0	0	0	2
Ground Heat Flux	0	0				0			0	0	0	0	1				0	•	0	0	0	0	0	1	0	0	0	0	2
Momentum Flux	0	0				0			0	0	0	0	0				0	•	0	0	0	0	0		0	0	0	0	0
CO2 Flux	0	0		_		0	_	_	0	0	0		0				0	_	0	0	0	0	0		1	0	0	0	1
Evaporation	1	0		1		1	0		1	1	1	1	0		1	1	1	_	1	0	1	1	1		0	1	1	1	19
Vegetation	0	0)			0	0	0	0	0	0		1				0	1	0	0	0	0	0		0	1	1	1	5
Atmosphere																													
PB L Tower	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
Radiosonde	1	0				0	0	0	0	0	0	0	1				0	0	0	0	0	0	0		0	1	1	1	5
Radar	1	1		l		1	0	0	0	0	0	0	1				0	0	0	0	0	0	0	1	0	1	1	1	9
Lidar	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
Profiler	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0
RASS	0	0				0	0	0	0	0	0	0	0				0	0	0	0	0	0	0		0	0	0	0	0


CEOP HYDROLOGY REFERENCE SITES

What is this? Candidate Sites

- Kyeamba Creek (Australia) Sleeven Polder (Ireland)
- > Walnut Gulch (US)
- > Igarape Asu (Brazil) Zwalm River (Belgium)
- > Volta River (Ghana) > Wolf Creek (Canada)
- > Naqu River (China) Submit Your Site **Current Entries**


Zwalm River, Belgium

The Zwalm catchment, a subcatchment of the the Schelde River basin, is situated in the province of East-Flanders, Belgium at approximately 50.840N and 3.780 E, (see Figure) with the outlet of the basin south of Gent near the village Nederzwalm. The total drainage area is 114 km2 and the total length of perennial streams is estimated from topographic maps, scale 1:10000, to be 177 km. Therefore, the drainage density is 1.55 km/km2, a value characteristic for humid catchments. The topography of the basin is characterized by rolling hills and mild slopes. The maximum elevation difference in the basin is 150 m. The mean slope of first order streams (Strahler order) is 3.8%. The catchment is situated in the sandy-loam area of Peerdestok Bee Flanders. Surface sampling has confirmed that most of the top layer of the soil profile has sandy loam texture, eventhough the Belgian soilmap surface to consist of deep loam soils (A-texture). The depth of the eolic cover is estimated to range between O and 10 m. Most of the land use is agriculture (arable crops and permanent pasture) but in the southern portion of the catchment it is forested (~50% Brakel-bos). The degree of urbanization is about 10% with urbanized areas mainly situated in the Northeast (Zottegem) and Southeast (Brakel).

slope is around 5% (channel slope 4.8% and hill slope 5.6%). The Sassegem subcatchment, with a drainage area of 2.49km2 and a total channel length of 2.92km, is situated in the extreme south of the Zwalm catchment. With average slopes of 8.5%, it is steeper than the Passemare.

Climatic conditions can be described as humid temperate. The mean annual rainfall is 775 mm and is distributed almost uniformly over the year. The average year temperature is 10 deg. C, with January the coldest month (mean temperature 3 deg. C) and July the warmest month (mean temperature 18 deg. C). The annual evaporation is approximately 450 mm.

Data Discussion Issues

- Consistent Formats, Additional parameters (e.g. aerosol, cloud)? Need survey....
- Finalize number of Reference Sites
- Review Reference Site Criteria
- Convert Reference Site data to NetCDF
- Finalize MOLTS points and formats!
- Continue collaboration and linkages with other Programs
- When does "new" CEOP start? Different times for different datasets? Continuity?