

Application of CEOP EOP 3 Data to a new Data Assimilation System for Soil and Snow

6th CEOP International Implementation Planning Meeting, 12-14 March 2007

s GRAF(tgraf@hydra.t.u-tokyo.ac.jp)ⁿ, Xin Liⁿ, Toshio KOIKEⁿ, Masayuki HiRAIⁿ and Hiroyuki TSUTSUIⁿ an, 2: Cold and Arid Region Environmental and Engineering Research Institute, China, 3: Japan Meteorological Ager

INTRODUCTION

Objectives

integrate a land surface model with remote sensing observation to improve the prediction of the land

The LDAS will later be coupled with atmospheric

Data Assimilation:

- Coupling satellite observation with a land surface sch > combining the information from two sources
- Sequential Data Assimilation Scheme
- Forward model for land surface (Model Operator)
- · Comparison of new model state with observation using an observation operator
- Update of model state

LDAS - OVERVIEW

Ensemble Kalman Filter (EnKF):

- Sequential Data Assimilation Ensemble Kalman Filter
- Ensemble of Model State: $X^a = \begin{bmatrix} X_1^a & X_2^a & X_3^a \end{bmatrix}$
- Predicting change of each Ensemble Member

Model Operator - Land Surface Model

- JMA's operational global NWP model currently adopts the Simple Biosphere (SiB) model which is developed by Sellers in 1986
- · In new SiB, snow and soil processes are improved substantially (including snow metamorphism)

- · Q/h Model
- AIEM Advance Integral Equation Model

Snow Radiative Transfer

MEMLS: Microwave Emission Model of Layered Snowpacks

Other Observation Operator can be easily integrated

APPLICATION EXAMPLES

CEOP EOP 3 Data Set for Application

- Model Output from JMA-GSM, operational global data assimilation system (3D-Var).
- Satellite Brightness Temperature AMSR-E
- In-Situ Observation for Comparison

Application

- Soil Moisture: CEOP Mongolia Site
- Snow Depth: CEOP Eastern Siberian Taiga Site

Soil Moisture/Temp. - CEOP Mongolia Reference Site:

- ADEOS II Mongolian Plateau Experiment for Ground Truth Grassland and Short Shrubs => Veg. RTM not considered Observation: TB + Polarization Ratio at 6.9 & 10.7 GHz
- Assimilation Parameter: Soil Moisture and Temperature

Snow Depth - CEOP Eastern Siberia Taiga:

- Eastern Siberia Taiga
- Dominated by Pine and Larch forest, however open fields along the banks of the Lena River
- Observation: dTB = TB_{18.7} TB₃₆

Soil Assimilation:

- · Direct TB Assimilation:
- => Update Soil Temperature and Moisture
- · Polarization Ratio
- => Update only the Soil Moisture Snow Assimilation:
- · Update Snow Depth only
- · 2 Cases
- 1. Using Precipitation from Model Output
- 2. Assuming No Precipitation
 - => Error in Modeled Precipitation

Soil Moisture and Soil Temperature at C2 and G6:

Polarization Ratio => only Soil Moisture

- Improvement compared to free run:
 - · during dry periods,
 - · high soil moisture peaks avoided

Direct TB assimilation => Soil Moisture and Temperature

- - · also high soil moisture peaks avoided
- Lower soil moisture layers were also improved
- Soil Temperature is underestimated

C2

Snow Depth at Tulagino and Khatassy:

and AMSR-E Snow Depth data

Both Precipitation and No-Precipitation provide

Summary for 7 In-Situ Snow Depth Observation Sites:

Site	No Precip.				Precip.				AMSR-E SD			
	A	R	B	E	A	R	В	E	1 A	R	В	E
Khatassy	12.0	1.9	-0.9	10.7	16.5	4.2	+3.6				+10.1	77.7
Larch	12.4	6.3	-5.8	30.6	16.2	2.5	-1.9	12.1	24.2	87	+6.1	
Pine	12.4	2.0	+1.1	17.6	16.2	5.4	+5.0	45.0	22.2	10.0	+12.5	36.7
Molot	12.4	2.4	0.0	18.2	16.2	41	190	21.0	05.0	12.8	+12.5	120.3
Tolagino	12.7	4.7	+4.4	26.2	17.0	2.0	0.0	34.0	25.0			
Viluy	17.5	4.8	+4.6	30.0	21.0	2.0	0.0	16.7	23.2	6.8		34.6
Kenkeme	17.0	5.0		10.0	21.2	8.0	+8.3	64.4	29.3		+16.3	
	A RILL	0.0	T#4	48.8	20.4	8.0	+7.9	71.6	27.7	150	415 1	197 0

A = Average [cm], R = RMSE [cm], B = Bias [cm], E = Avg. Error [%]

Conclusions:

- CEOP Data Set provides a valuable resource for application development and testing.
- · For both cases (snow and soil), the assimilation of the satellite brightness improves the result of the land surface model.
- The flexible LDAS allows an easy integration of a wide variety of observation sources.

Outlook:

- Coupling with atmospheric model: Improved feedback between land-surface and atmosphere?
- · Addition of further observation sources (e.g.