

Research plan of a new CEOP reference site over Loess Plateau

Jianping Huang

College of Atmospheric sciences
Lanzhou university
Lanzhou, China
Email: hjp@lzu.edu.cn

CEOP/IGWCO Joint Meeting, Feb. 28, 2006, Paris

Introduction of new CEOP Reference site

Objective & Research Plan

- Monitoring of long term tendencies in climate changes;
- Monitoring of the aerosol effect on water cycle;
- Studies of interaction between land surface and atmosphere;
- Improve the climate model;
- Validation of space-borne observations;
- Development and implementation of new measurement techniques;
- Training of young scientists at post-doc, PhD and master level.

Introduction of new CEOP Reference site

Why do we develop a climate-environment observatory in semi-arid region of Loess Plateau?

- Fill the gap of global climate monitoring network
 There is no any international network (such as CEOP, BSRN, Aeronet) site in Loess Plateau yet;
- Loess Plateau is a special semi-arid land surface; & part of dust aerosol source and close to the desert.

Climate and Environment:

Elevation: 1874.1 m

Surface Type: loess tableland,

ridge, hillock and gully

Land Cover: moderation

Annual Mean Parameters:

Precipitation: 381.8 mm

Evaporation: 1326.3 mm

Relative Humidity: 63%

Wind Speed: 1.6m/s

Sunshine hours: 2607.2h

CEOP Reference site Tongyu and Lanzhou

Location: Yuzhong Campus of Lanzhou University (35.32N, 104.09E)

Observatory Facility

? 州大学大气科学学院

Phase I 2005 - 2006:

- To be a CEOP Reference Site &
- Start CEOP Required Measurements

Station Pressure
Specific Humidity
Precipitation
Temperature/Moisture
Sensible Heat Flux
CO₂ Flux
Incoming LW Radiation
Outgoing LW Radiation

Air Temperature
Wind Speed/direction
Soil

Latent Heat Flux
Soil Heat Flux
Incoming SW Radiation
Outgoing SW Radiation

and so on

Basic Instruments

Parameter	Model	Manufacturer
Soil Temperature	STP01_L50	HUKSEFLUX
Soil Moisture	CS616_L	CAMPBELL
Sensible Heat Flux	LI-COR CS7500	CAMPBELL
Latent Heat Flux	FW05	CAMPBELL
CO2_Flux	CSAT3	CAMPBELL
Soil Heat Flux	HFP01Sc_L50	HUKSEFLUX
Aerosols	CE 318-1I	CIMEL ELEC
Wind Direction	014A_L	Met One
Skin Temperature	IRTSD-P	APOGEE
Specific Humidity	45C_L	VAISALA
Incoming Shortwave	CM21	Kipp & Zonen
Outgoing Shortwave	CM21	Kipp & Zonen
Incoming Longwave	CG4	Kipp & Zonen
Outgoing Longwave	CG4	Kipp & Zonen
Station Pressure	CS105	TEXAS ELECT
Air Tenperature	HMP	VAISALA
Precipitation	TE525MM_L	TEXAS ELECT
Wind Speed	034A_L	Met One

? 州大学大气科学学院

Three Additional Instruments Bought in Phase I:

1. Microwave Temperature, Humidity& Liquid Water Profiling Radiometer

2. Cimel Sunphotometer

It is a multi-channel, automatic sunand-sky scanning radiometer that measures the direct solar irradiance and sky radiance at the Earth's surface.

3. CAMELTM CE370-2 Lidar, Wavelength = 532 nm

Winter, Clear Sky, Lanzhou 03: 52: 03(UTC), Nov 11, 2005

Phase II: 2006-2007

To Build up:

Aerosol & Clouds Observation System
Surface Radiation Observation System
Atmosphere-Land Interaction Observation System
Raman Lidar System.

Major Instruments in Phase II

Multi-Filter Rotating Shadowband Radiometer (MFRSR)

Diffuse shortwave irradiance Direct shortwave irradiance Shortwave irradiance

Multi-Filter Radiometer (MFR)

It is simply the head from a multi filter rotating shadowband radiometer (MFRSR) mounted on a tower pointing at the surface.

Major Instruments in Phase II

Micropulse Lidar (MPL)

- Aerosol exctinction
- Backscatter profile
- Cloud decks Cloud layer
- Lidar backscatter
- Relative backscatter

Vaisala Ceilometer

- Backscatter profile
- Cloud-bottom height
- Lidar backscatter

Major Instruments in Phase II

Raman Lidar

The Raman Lidar (RL) is an active, ground based laser remote sensing instrument that measures vertical profiles of water-vapor mixing ratio and several cloud- and aerosol-related quantities.

Research Plan:

As other CEOP reference site, we are going to follow the CEOP Phase II research plan, especially to support the semi-arid region study project.

Focus:

We also will focus to find the directly observed evident of the aerosol effect on energy and water cycle, such as effect on:

- •surface radiation budget;
- •surface Fluxes;
- humidity and cloud water path
- •other microphysical parameter;

Research Plan:

? 州大学大气科学学院

Preliminary Results: Indirect Effect of Dust Aerosol

Reduce the ice diameter and increase high cloud cover Huang et al., GRL, 2006

Comparison of ice cloud diameter over the dust-free cloud (CLD) and clouds over the dust (COD) region.

Correlation between Taklamakan dust storm index and ISCCP high cloud amount

Preliminary Results: Semi-direct Effect of Dust Aerosol

Reduce low cloud water Path Hauang et al., GRL, 2006

Comparison of low cloud water path over the dust-free cloud (CLD) and clouds over the dust (COD) region.

Correlation between Taklamakan dust storm index and ISCCP low cloud LWP

Preliminary Results: Radiative Effect of Dust Aerosol

Due to changes in cloud microphysics by dust aerosol, the instantaneous net radiation forcing is increased from -200 W/m² for dust-free clouds to -150W/m² for dust contaminated clouds. The reduced cooling effects of dust may lead to a net warming effect.

International Workshop on Semi-Arid Land Surface-Atmosphere Interaction 2007 Summer, Lanzhou, China

Key areas will be discussed:

- Land surface-atmosphere interactions
- Dust aerosol effect on hydrological cycle
- Climate change monitoring in semi-arid environment
- International cooperative field campaign over Northwest China

Organizer:

Prof. Jianping Huang, College of Atmospheric Sciences Lanzhou University email: hjp@lzu.edu.cn

Scientific Committee:

Prof. Congbin Fu(Chair)
Institute of Atmospheric Physics,
Chinese Academy of Sciences
email: fcb@tea.ac.cn

Thank You & See You in Lanzhou Next Year!

Region 1: Pure Dust Region 2: Pure Cloud

Region 3: Partial Cloud over Dust Region 4: Cloud over Dust

? 州大学大气科学学院

? 州大学大气科学学院