An auto-calibration system

to assimilate AMSR data into a land surface model for estimating soil moisture and surface energy budget

T. KOIKE¹, K. YANG¹, T. WATANABE¹, X. LI², H. FUJII¹, K. TAMAGAWA¹, Y. MA³, H. ISHIKAWA⁴

1. The University of Tokyo

- 2. CAREERI, Chinese Academy of Sciences
- 3. Inst. Tibetan Plateau, Chinese Academy of Sciences.
- 4. Kyoto University

Four Dimensional Data Assimilation

Two-pass LDAS-UT

soil texture, porosity: LSM surface roughness: RTM

Seasonal Variation of the Soil Moisture in the Tibetan Plateu 6G Mv(%) tibet_D 2003SEP-lost

Input data→ Easy application in any region

- LDAS-UT grid size: 0.5 degree
- Forcing
 - GPCP precipitation: 1 degree
 - ISCCP radiation: 2.5 degree
 - NCEP reanalysis: 1.5 degree
- Leaf area index: MODIS 0.25 degree 8-day product
- Microwave Tb: AMSR 0.5 degree 6.9 and 19.7 GHz

First application: A case at CEOP Tibet site

Items	Station (depth)
Precipitation	BJ
Radiation	BJ
Surface	BJ, MS3608
temperature	S-AWS1, S-AWS3
Near-surface	BJ, MS3608 (4cm)
soil moisture	S-AWS1, S-AWS3 (0-5 cm)
	SSMTMS (0-3 cm)
Turbulent fluxes	BJ (3m, 20m)

Comparisons between Assimilation and No assimilation

• Contamination of rainfall errors

Surface energy budget

Application to the Tibetan Plateau 2003

Seasonality of TP-mean fluxes and S.M.

Seasonality of distributed Bowen ratio

LDASUT

NCEP

LDAS Seasonality: May~Mid June, H > IE; Mid June~Aug; IE>H LDAS Regionality: H is dominant in N.W. TP, IE is dominant in S.E. TP