

The uniform MOLTS-format in netCDF and some examples of data comparisons

Dr. Beate Geyer – GKSS Geesthacht, Germany

beate.geyer@gkss.de

network Common Data Form Climate and Forecast (CF) Metadata Convention

General main principle of the convention:

Data should be self-describing

- no external tables needed to interpret it

Information (as missing_value,...) is generally provided per-variable, not per-file

Files contain: Global attributes

Basic metadata concerning e.g. origin of the data

For GCM-Molts and RefSite-Data we have following structure in *.nc-files: **conventions** CF-1.0

conventionsURL http://www.unidata.ucar.edu/software/netcdf/conventions.html

institution UK Met Office

- **source** Global Unified Model, 0.83x0.56 degree (MOSES2 as Veg. des. scheme used)
- history download of data from CERA: Fri Nov 18 13:56:24 MET 2005 transformation to netCDF: Wed Dec 21 11:24:08 MET 2005
- **location** Lindenberg; Coordinates of RefSite: 52.17N 14.12E 73m

Files contain: Description of the data

variable name

standard_name

long_name

original_name

units

_FillValue

flag_value

flag_meanings

cell_methods

comments

File contains: Description of the data

variable name	T_2M	TOT_PREC	FR_LAND
	(ion lat neight_2m time)	(ion lat time)	(1011 1at)
standard_name	air_temperature		sea_ice_area_fraction
long_name	2m temperature		sea ice presence flag
original_name	SFST2M		
units	K		1
_FillValue	-1.e+20		
flag_value	-	-	0, 1
flag_meanings	-	-	unfrozen_sea_or_land_mass sea_ice
cell_methods	-	time: sum	
comments	data are 12h to 35 h forecasts		
			Beate Geyer

Standard_names

Search facility for standard names at:

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/

690 entries in standard-name-table (last update 2006-Feb-05)

e.g.

- eastward_wind
 - Unit : m s-1
 - "Eastward" indicates a vector component which is positive increasing eastward (negative westward).
 Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component.
 (Vertical motion in the atmosphere has the standard name upward_air_velocity.)
- air_pressure_at_cloud_top
- eastward_atmosphere_dry_static_energy_transport_across_unit_distance

Dimensions

- Coordinates: Lat, Lon
- Height:
 - model level,
 - pressure level,
 - cloud height (high, medium, low)
 - definition height of variable, e.g. 2m for 2m-temperature
- Time:
 - reference time (time of analysis), and
 - forecast time
 - units: 'minutes since 1970-01-01 00:00:00'

e.g.

```
T_2M(time,forecast,height_2m,lat,lon)
```

time = 17313120forecast = 3 height_2m = 2m lat = 13.87lon = 52.16

Dimensions

- Coordinates: Lat, Lon
- Height:
 - model level,
 - pressure level,
 - cloud height (high, medium, low)
 - definition height of variable, e.g. 2m for 2m-temperature

• Time:

- reference time (time of analysis), and
- forecast time

units: 'minutes since 1970-01-01 00:00:00'

e.g.

T_2M(time,forecast,height_2m,lat,lon)

- time = 17313120forecast = 3 height_2m = 2m lat = 13.87
- lon = 52.16

Dimensions

- Coordinates: Lat, Lon
- Height:
 - model level,
 - pressure level,
 - cloud height (high, medium, low)
 - definition height of variable, e.g. 2m for 2m-temperature

• Time:

- reference time (time of analysis), and
- forecast time

units: 'minutes since 1970-01-01 00:00:00'

e.g.

 $T_2M(time,forecast,height_2m,lat,lon)$ time = 17313120 forecast = 3 height_2m = 2m lat = 13.87 lon = 52.16

Bounds & Cell_methods

Bounds

- Time_bnds: begin and end of interval for mean/sum
- Soil_bnds: upper and lower boundary of soil layer in case of e.g. moisture content of soil layer
- Cloud_bnds: pressure boundaries for high, medium and low clouds

• Cell_methods

- Time: mean
- Time: maximum
- Soil_depth: mean

Finally we should have two sets of GCM-Molts

- 1. .nc-files including all data given at CERA and at CEOP-www-site in different files (as GCM-lon, -lat and gridbox-height, vegetation type, albedo, LAI,...)
- Same as 1. but difference in dimension of meteorological data: .nc-files include only as many forecast-data as necessary for continuous time series

e.g.:

•from ECMWF-data:

as recommended forecast hours 12 to 35 from daily analysis •from ECPC-data:

analysis and 3h-forecast for instantaneous values and

3h- and 6h-forecasts for means over last 3 hours

Outlook

- Fill in the last gaps in standard name table of netCDF
- Specification of uncertainty of RefSite-Data in case of missing values
- Add information on uncertainty of measuring instruments to RefSite-Data, vegetation, soil_type,...

Thanks for your attention!