CEOP-hased Diagnosis of Prediction Skill of Four Operational GCMs and One Land Data Assimilation System
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Abstract

Based on the platform of the Coordinated Enhanced Observing Period (CEOP) project, this study evaluated forecast skill of four
operational GCMs (BMRC, JIMA, NCEP, and UKMO) and NASA global |and data assimilation system (GLDAS) through comparisons
between in situ data and model output of CEOP/EOP 3 (2002/10/1~2003/9/30). This evaluation not only contributes to improving
forecast skill but aso provides guidance for data users to choose appropriate data from these model products for their applications.

Data: In situ and model output at 27 CEOP reference sites

Figure 5 shows the relationship between errors in precipitation and errors in evapo-transpiration of NCEP and JMA at eight
flux sites. NCEP gave a positive correlation between errors in precipitation and in evapo-transpiration, suggesting that the over-
prediction of precipitation by NCEP results in its over-prediction of evapo-transpiration and under-prediction of sensible heat
fluxes (See Fig. 1). On the other hand, IMA gave a quite weak correlation, though both IMA and NCEP use the SiB2 |and model.

Figure 6 shows that al the models under-predicted monthly- | ¢
mean diurnal range (maximum minus minimum temperature)
of surface skin temperature at West Tibet and Mongolia. | -
Similar bias is also found at other sites (East Tibet and Fort | o
Peck) in arid and semi-arid regions. Therefore, under- | *
prediction of Tsfc diurna range is a common phenomenon for
arid and semi-arid regions and should be related to a model | -«
deficiency. This under-prediction implies that current land
surface models may under-predict aerodynamic resistance or
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For appropriate comparisons between in situ observations and grid-based model output, this study follows three rules.
« First, we compare monthly-mean values or monthly-mean diurnal cycle instead of hourly or 3-hourly values, because spatial

variability can be effectively smoothed through tempora averaging.

* Second, sites that have avery different land use between in situ and models are excluded from the comparisons of surface
temperature and fluxes, because of their sensitivity to surface conditions. For example, observations of surface variables at small
island sites can be very different from model output that actual ly represents the values on surrounding sea surface.

« Third, asystematic biasis suggested only if it is found for most models or most sites.

General evaluation of four GCMs (Fig.1)

a. Monthly-mean air temperature (Tair) and humidity (qair)

All the models yielded small MBEsfor Tair and gair. BMRC gave a RMSE of
4.1K for Tair and 2 g kg* for gair, but other models produced much smaller
RMSEs(~2.5K for Tair; ~1 g kg™ for gair).

b. Monthly-mean surface temperature (Tsfc)

All the models produced negative bias of Tsfc. NCEP yielded the smallest
scattering, and UKMO yielded the largest scattering. BMRC data are not
available.

¢. Monthly-mean surfaceradiation (SWD, LWD)

SWD was over-predicted by all the models. LWD was under-predicted by
NCEP and JIMA whileits prediction by UKMO is much better. IMA gave the
maximum biases for SWD and LWD (30 W m?), and UKMO gave the
minimum biases. However, the errorsin the two components counteract or
compensate each other, which generally resultsin a small bias for the total
downward radiation. As aresult, both IMA and UKMO produced better total
rediation than NCEP and BMRC.

d. Monthly-mean surface heat fluxes (H, IE)

RMSEsin H of al the models (> 20 W m?) are comparable to the order of the
observed one (17 W m?). IMA produced the smallest MBE and RM SE for H
and |E and seems to be the best one. NCEP much over-predicted |atent heat
fluxes (or evapo-transpiration) while under-predicted sensible heat fluxes.
BMRC produced the maximum RM SE value and a moderate MBE value.

e. Monthly-mean precipitation (P)

NCEP and JMA over-predicted precipitation while BMRC and UKMO under-
predicted it. The difference between NCEP MBE and BMRC MBE iseven
comparable to the magnitude of the observed precipitation (~2.5 mm d?).

Evaluation of representations of physical processes

1. Radiation scheme

All these schemes systematically over-predicted downward shortwave
radiation at almost all the sites. This over-estimation by GCMs was also found
by many early studies (eg. Cess et a. 1995). Ramanathan et a. (1995)
suggested that the cloud absorption in the model might be less than observed.
Recent evauation by Wild et a. (2006) shows that atmospheric clear-sky|
absorption is under-estimated 10 W m2 in many GCMs. If this is true for the
CEOP participating GCMs, then about half of the errorsin Fig. 1(b1) could be
explained by the clear-sky absorption.

General under-prediction of downward longwave radiation by NCEP and IMA
is aso found for many other models (e.g. Garratt and Prata 1996; Wild et al.
2001). An example is shown in Fig. 2 for East Siberia Tundra site, where the
longwave radiation was well predicted by UKMO whereas poorly predicted by
other models. Therefore, we tend to believe longwave schemes rather than
external factors (biomass burning, scale-mismatch etc.) should play the major|
role for the under-estimation. The RRTM, which is supposed to be the best for
clear-sky radiation computation (Morcrette, 2002), indeed show small errors in
NCEP model (see Fig. 1), but the Slingo and Wilderspin (1986) scheme used in
UKMO shows even higher accuracy for al-sky conditions.

2. Cloud scheme

Figure 1 shows that IMA and NCEP over-predicted precipitation and BMRC
under-predicted it. UKMO gave the smallest MBE. Fig. 3 shows errors in
forecasts of monthly-mean heavy precipitation are a magjor contributor to the
total model biases. IMA and NCEP predicted more heavy-precipitation months
while BMRC predicted fewer heavy-precipitation months. This suggests that
Arakawa-Schubert scheme that is used in IMA and NCEP tends to predict more
precipitation.

Table 3 shows the total precipitation amount in the rainy season at individual
sites for EOP3 (the rainy season is defined in Table 3). All the models show
systematical and significant over-estimates of precipitation in some regions
(HIM and CAB) or under-estimates in some other regions (DAR, MNS and
NSA), suggesting that precipitation schemes in these GCMs also share some
model deficiencies.

3. Land surface scheme
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Figure 1 The Mean Bias Error (MBE) and Root
Mean Square Error (RMSE) of EOP3 at all the sites.

P —
—NGEP —UKHO

w0
et Now Doc i Fob Nar e May dn a1 Aup S

Figure 2 Monthly-mean diurna variation of downward
longwave radiation at Eastern Siberian Tundra site.
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Table 3 Total precipitation in rainy seasons of EOP3
at 16 siteswhere data are available (Bold row:- al
the models overestimate; Italic row:- all the models
underestimate).
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Figure4 Monthly mean values of EOP3at LBA-
Santarem site
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Fig. 4 shows BMRC much over-predicted Tair and much under-predicted gair in the summer season (Oct-Dec) a LBA/Santarem.
Similar biases are found at other LBA/sites (Manus and Pentanal) and BALTEX sites (Linderberg and Cabauw) in the summer season.
By contrast, BMRC under-predicted air temperature in some cold regions (e.g. Tundra and NSA-Barrow). UKMO also shows similar
large over-prediction of air temperature for the tropical regions (e.g. Amazon, Thailand, and Australian Darwin) in the summer and
under-prediction for West Tibet. These large biases were caused by incorrect surface energy partition between sensible heat and latent

heat. An example for Santarem is shown in Figs. 4(c) and 4(d). This explained why the RMSE of Tsfc, H, Tair and gair predicted by
BMRC is larger than other models (see Fig.1). This result is not surprising because BMRC uses a simple bucket hydrological model that

does not explicitly account for vegetation processes.

(b) JMA
over-predict turbulent heat transfer capability for bare soil and |
sparse vegetation surfaces. In other words, current land | =
models can well describe dense canopy processes but might be | £°
questionable for describing bare soil and sparse canopy | *
processes. An example that improves representations of bare
soil and sparse canopy processes was presented by Yang etd. | -«
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Evaluation of precipitation diurnal cycle

Figure5 Comparison of
model errors between GCM
monthly-mean rainfall and
evaporation

Figure6 Monthly-mean
diurnal variation of Tsfcin
arid and semi-arid regions

1. Resultsfromin situ data were comparable with those in the literature (not

2. Fig. 7 shows the composite diurnal cycle of precipitation intensity and frequency pattern. It is shown that the peak of
precipitation intensity occurs at 14 LST and 2 hours earlier than that of precipitation frequency.
3. Fig.7 shows alocal minimum of precipitation intensity at 18 LST from in situ data, which has not been reported in the

shown)

literature
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4. Fig.8 shows an afternoon peak and a nighttime
peak. At the tropica sites (8a), the afternoon peak
is much stronger than the nighttime one.At higher
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latitudes (8b), the afternoon peak is comparable to
the nighttime. The nighttime peak time varies
from site to site, and thusit is not clear in the
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composite diurnal pattern. 04
5. Figure 7 shows that all the models produced the
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afternoon peak, but no model is able to produce
the 18 LST local minimum and the nighttime
peak. For the afternoon peak, the frequency
patterns of IMA and NCEP are most close to the
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observed one, but UKMO predicted 1-2 hours
earlier and BMRC 4-5 hours earlier than the
observed one. Thereis no remarkable difference
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in precipitation intensity and frequency between
forecast and analysis output for both UKMO and
MBRC. Thisimplies the diurnal changeis mainly
determined by model’ s nature rather than initial
conditions.
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Figure 7 Composite diurnal cycle
of precipitation derived from in
Situ data and GCM output in rainy
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Figure 8 Diurna cycle of
precipitation derived from in situ
data at tropical sites and at four
higher-latitude sites
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Evaluation of GLDAS
Fig. 9 shows four examples of comparisons of monthly-mean diurnal

variation of Tsfc between in situ data and three GLDAS products. At West
Tibet, GLDAS does not improve skin temperature simulation compared to
the GCMs (see Fig.6(a)). Nevertheless, GLDAS/CLM and Noah clearly
reproduced the observed surface temperature at other three sites. Thisis not
surprising because GLDAS assimilates remotely sensed surface skin
temperature. GLDAS/Mosaic produced very clear cold biases at nighttime,

which should be attributed to its model deficiency since all the forcing data |

and assimilation data are identical in the three land models.

However, the three land models produced quite different fluxes, as shown
in Fig. 10 for Bondville and Cabauw sites. Although both Noah and CLM
well produced surface skin temperature at the two sites (See Fig.9), they
yielded very different surface energy partition. GLDAS/Noah generally
yielded better energy partition than CLM and Mosaic. For the summer
season, not only all the modeled energy partitions deviate far from the
observations, but also the differences among the models are comparable to
the differences between models and measurements. These resultsindicate
that (1) uncertaintiesin this data assimilation system are quite large and
representations of key land processes and model parameters play amore
important role than data assimilation technique, and (2) it is still difficult
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Figure 9 Tsfc monthly-mean diurnal variation
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for aLDAS to generate reliable surface energy partition by only
assimilating surface temperature. It is expected that these uncertainties
would decrease after the system assimilates soil moisture-relevant satellite
data, such as low frequency data of the Advanced Microwave Scanning
Radiometer (AMSR) instrument carried by NASA Earth-observation
satellite Aqua, as demonstrated by Yang et al. (2006).

Conclusions
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Figure 10 H & IE monthly-mean diurnd variation

« Air temperature and humidity. IMA and NCEP usually have good skill in estimating air temperature, humidity, but BMRC

and UKMO have much higher biases in some regions in specific periods.

In detail, BMRC over-predicted air temperature and

under-predicted humidity in Amazon and Baltic regions during their summer season, and under-predicted air temperature in the
Polar region. UKMO over-predicted air temperature for the tropical regions (e.g. Amazon, Thailand, and Australian Darwin) in
the summer and under-predicted it for West Tibet in the winter. These biases were caused by incorrect surface energy budget in

land surface models.

« Surface temperature. All the GCMs under-predicted the diurna range of surface skin temperature in arid and semi-arid
regions. Asthe diurnal range is strongly determined by surface resistances for heat transfer, this under-prediction in turn implies
that the land surface models may under-predict aerodynamic resistance for heat transfer over bare soil and sparse vegetation

surfaces.

* Radiation. Downward shortwave radiation was over-predicted in al the GCMs, perhaps due to under-estimation of clear-sky
and/or cloud absorption. Downward longwave radiation was under-predicted by NCEP and IMA while its prediction by UKMO
is much better. We tend to believe that it is the longwave scheme of the GCMs rather than some external factors that resultsin
this under-prediction. IMA gave the poorest estimation for both downward radiation components, and UKMO gave the best. It
isinteresting that IMA and UKMO produced total downward radiation equally well, because the errors in the two downward

components counteract or compensate each other.

« Surface energy budget. In generd, the surface energy budget was not well predicted by al the models. IMA shows better skill
to estimate surface energy budget. NCEP tends to over-predict latent heat fluxes, which is associated with its over-prediction of
precipitation. BMRC uses a simple bucket hydrological model without explicit vegetation, which yielded unrealistic surface

energy budget at some sites in specific seasons.

* Precipitation. Diurnal cycle of precipitation based on in situ data is comparable to that derived from dense observations or
satellite data. Composite diurnal cycle shows an afternoon peak and a nighttime peak of precipitation intensity in rainy seasons.
A low intensity around 18 LST was also observed at many sites. In the tropical regions, the afternoon peak is stronger than the
nighttime pesk. In other regions, both peaks are strong, but the onset time of the nighttime rainfall is more variable. IMA and
NCEP tend to over-predict precipitation amount while BMRC tends to under-predict it. Particularly, there are more months with
heavy precipitation in IMA and NCEP and fewer in BMRC. All the nodels produced an afternoon pesk. IMA and NCEP
predicted it well, but UKMO predicted it 1-2 hours earlier and BMRC predicted it 4-5 hours earlier. Reanalysis products show
similar results, implying the modeled diurnal cycle is mainly determined by model’s nature rather than initial conditions. No

model reproduced the nighttime peak and the low intensity at 18 LST.

¢ GLDAS. Compared with the GCMs, GLDAS/CLM and Noah can improve surface skin temperature simulations except in dry

regions, but there are noticeable differences in the surface energy partition

among land models and also between the models and

observations. Model uncertainties (model minus model) are comparable to model errors (model minus observation), indicating
that representations of land processes and model parameters are of primary importance for simulations of surface energy budget,
and data assimilation technique only plays a secondary role in GLDAS. To improve surface energy budget modeling, it is
essential to improve parameterizations of land processes and to calibrate land models. Also, We suggested the necessity of
assimilating not only surface skin temperature but also soil moisture-relevant satellite data into aland data assimilation system.



