
Abstract

Methodology

General evaluation of four GCMs (Fig.1)

• Air temperature and humidity. JMA and NCEP usually have good skill in estimating air temperature, humidity, but BMRC 
and UKMO have much higher biases in some regions in specific periods. In detail, BMRC over-predicted air temperature and 
under-predicted humidity in Amazon and Baltic regions during their summer season, and under-predicted air temperature in the 
Polar region. UKMO over-predicted air temperature for the tropical regions (e.g. Amazon, Thailand, and Australian Darwin) in 
the summer and under-predicted it for West Tibet in the winter. These biases were caused by incorrect surface energy budget in 
land surface models.

• Surface temperature. All the GCMs under-predicted the diurnal range of surface skin temperature in arid and semi-arid 
regions. As the diurnal range is strongly determined by surface resistances for heat transfer, this under-prediction in turn implies 
that the land surface models may under-predict aerodynamic resistance for heat transfer over bare soil and sparse vegetation 
surfaces.

• Radiation. Downward shortwave radiation was over-predicted in all the GCMs, perhaps due to under-estimation of clear-sky 
and/or cloud absorption. Downward longwave radiation was under-predicted by NCEP and JMA while its prediction by UKMO 
is much better. We tend to believe that it is the longwave scheme of the GCMs rather than some external factors that results in 
this under-prediction. JMA gave the poorest estimation for both downward radiation components, and UKMO gave the best. It 
is interesting that JMA and UKMO produced total downward radiation equally well, because the errors in the two downward 
components counteract or compensate each other.

• Surface energy budget. In general, the surface energy budget was not well predicted by all the models. JMA shows better skill 
to estimate surface energy budget. NCEP tends to over-predict latent heat fluxes, which is associated with its over-prediction of 
precipitation. BMRC uses a simple bucket hydrological model without explicit vegetation, which yielded unrealistic surface 
energy budget at some sites in specific seasons.

• Precipitation. Diurnal cycle of precipitation based on in situ data is comparable to that derived from dense observations or 
satellite data. Composite diurnal cycle shows an afternoon peak and a nighttime peak of precipitation intensity in rainy seasons. 
A low intensity around 18 LST was also observed at many sites. In the tropical regions, the afternoon peak is stronger than the 
nighttime peak. In other regions, both peaks are strong, but the onset time of the nighttime rainfall is more variable. JMA and 
NCEP tend to over-predict precipitation amount while BMRC tends to under-predict it. Particularly, there are more months with 
heavy precipitation in JMA and NCEP and fewer in BMRC. All the models produced an afternoon peak. JMA and NCEP 
predicted it well, but UKMO predicted it 1-2 hours earlier and BMRC predicted it 4-5 hours earlier. Reanalysis products show 
similar results, implying the modeled diurnal cycle is mainly determined by model’s nature rather than initial conditions. No 
model reproduced the nighttime peak and the low intensity at 18 LST. 

• GLDAS. Compared with the GCMs, GLDAS/CLM and Noah can improve surface skin temperature simulations except in dry 
regions, but there are noticeable differences in the surface energy partition among land models and also between the models and 
observations. Model uncertainties (model minus model) are comparable to model errors (model minus observation), indicating 
that representations of land processes and model parameters are of primary importance for simulations of surface energy budget, 
and data assimilation technique only plays a secondary role in GLDAS. To improve surface energy budget modeling, it is 
essential to improve parameterizations of land processes and to calibrate land models. Also, We suggested the necessity of 
assimilating not only surface skin temperature but also soil moisture-relevant satellite data into a land data assimilation system.

Based on the platform of the Coordinated Enhanced Observing Period (CEOP) project, this study evaluated forecast skill of four 
operational GCMs (BMRC, JMA, NCEP, and UKMO) and NASA global land data assimilation system (GLDAS) through comparisons 
between in situ data and model output of CEOP/EOP 3 (2002/10/1~2003/9/30). This evaluation not only contributes to improving 
forecast skill but also provides guidance for data users to choose appropriate data from these model products for their applications.

Data: In situ and model output at 27 CEOP reference sites 

For appropriate comparisons between in situ observations and grid-based model output, this study follows three rules. 
• First, we compare monthly-mean values or monthly-mean diurnal cycle instead of hourly or 3-hourly values, because spatial 

variability can be effectively smoothed through temporal averaging. 
• Second, sites that have a very different land use between in situ and models are excluded from the comparisons of surface 

temperature and fluxes, because of their sensitivity to surface conditions. For example, observations of surface variables at small 
island sites can be very different from model output that actually represents the values on surrounding sea surface. 

• Third, a systematic bias is suggested only if it is found for most models or most sites. 

Tsfc Rain

Lindenberg LIN 52.2 14.1 112 ● ● Beyrich & Adam(2004)

Cabauw CAB 52.0 4.9 -1 ● ● Isemer (2002)

Sodankylä SOD 67.4 26.7 179 O Isemer (2002)

ARM Southern Great Plains SGP 36.6 -97.5 313 ● Raymond McCord

Bondville BON 40.0 -88.3 300 ● ● Tilden P. Meyers

Fort Peck FPE 48.3 -105.1 800 ● ● Tilden P. Meyers

Oak Ridge ORI 36.0 -84.3 275 ● ● Tilden P. Meyers

Eastern Siberian Tundra ES1 71.6 128.8 38 ● Ohata et al. (1999)

Eastern Siberian Tiaga ES2 62.3 129.6 220 ● Ohta et al. (2001)

Mongolia MON 45.7 106.3 1393 ● ● Kaihotsu et al. (2003)

Tongyu TON 44.4 122.9 184 ● Wenjie Dong & Huizhi Liu

Tibet TIB 31.4 91.9 4580 ● ● Ishikawa et al. (2001)

West Tibet GAI 32.5 84.1 4416 ● Ishikawa et al. (2001)

Himalayas HIM 28.0 86.8 5050 ● Bollasina et al. (2002)

North South China Sea NSC 25.0 121.2 8 ● Chen et al. (2004)

Korean Haenam KHA 34.6 126.6 14 Kim et al. (2002)

Korean Peninsula KPE 37.4 127.9 330 ● Kim et al. (2002)

Chao-Phraya River - Lampang CPL 18.4 99.5 241 ● Masatoshi AOKI

North-East Thailand NET 14.5 102.4 311 ● Masatoshi AOKI

Western Pacific Ocean WPO 7.1 134.3 40 ● Kubota et el. (2002)

Equatorial Island EIS -0.2 100.3 699 ● Mori et al. (2004)

Manaus MAN -2.6 -60.2 130 ● ● Marengo et al. (2003)

Santarem SAN -3.0 -55.0 N/A ● Marengo et al. (2003)

Pantanal PAN -19.6 -57.0 N/A ● ● Marengo et al. (2003)

ARM NSA-Barrow NSA 71.3 -156.6 8 ● ● Tilden P. Meyers

ARM TWP-Manus MNS -2.1 147.4 4 ● Raymond McCord

ARM TWP-Darwin DAR -12.4 130.9 29.9 ● ● Raymond McCord

●●

●

●

●

●

O

●

●

●

●

●

●

O

O

●

●

●

●

●

Radiation

●

●

●

◎

●

●

●

◎

●

●

●

●

●

●

Ta&qa

●

●

●

References/PI

●

●

●

●

●

●

Flux

●

●

Data availabilityCSE Reference Site Name Lat.
(N)

Lon.
(E)

Ele.
(m)

Code

LBA

ARM

BALTEX

GAPP

CAMP

●

●

●

◎

●

O

O

● ●

O O

●

●

●

●

O

Table 1 Geographic information and EOP3 data availability 
at CEOP reference sites (blank – no data; ●- data used; ◎-
Ta used but qa unavailable; O- data questionable or 
vegetation-type mismatched).

Table2 In situ and GCMs-used vegetation types at 
CEOP sites (UKMO column shows the type with the 
maximum area fraction. No explicit vegetation in 
BMRC model).

In-situ JMA NCEP UKMO GLDAS

Lindenberg Grassland Savana Cultivations Grass Cropland

Cabauw Short grass Savana Groundcover only Grass Cropland

Sodankylä Needleleaf evergreen trees Needleleaf evergreen trees needleleaf evergreen trees Needleleaf trees Bareground

ARM SGP Grassland Mixed forest Cultivations Grass Cropland

Bondville Cropland savanna Cultivations Grass Cropland

Fort Peck Grassland Grasslands Groundcover only Grass Grassland

Oak Ridge Mixed forest Mixed forest Mixed forest Broadleaf trees Wooded Grassland

Eastern Siberian Tundra Open Shrubland Ocean Tundra Bare Soil Open Shrubland

Eastern Siberian Tiaga Needleleaf deciduous trees Needleleaf deciduous trees Needleleaf deciduous trees Needleleaf trees Wooded Grassland

Mongolia Grassland Grasslands Bare soil Bare Soil Grassland

Tongyu Cropland Grasslands Cultivations Grass Cropland

Tibet Grassland Grasslands Bare soil Grass Grassland

west Tibet Grassland Bare soil Bare soil Shrubs Bareground

Himalayas Grassland Grasslands Mixed forest Grass Bareground

North South China Sea N/A Ocean groundcover only Grass Shrubs

Korean Haenam groundcover only Savanna Groundcover only Grass Wooded Grassland

Korean Peninsula Broadleaf deciduous trees Broadleaf deciduous trees Cultivations Grass Cropland
Chao-Phraya River -
Lampang Deciduous Forest Savanna Cultivations Broadleaf trees N/A

North-East Thailand Broadleaf decidous trees Savanna Broadleaf decidous trees Broadleaf trees Cropland

western Pacific Ocean N/A Ocean Ocean Ocean Ocean

Equatorial Island N/A Tropical forest Cultivations Broadleaf trees Grassland

Manaus Tropical forest Tropical forest Tropical forest Tropical forest Tropical forest

Santarem Tropical forest Tropical forest Tropical forest Topical forest Tropical forest

Pantanal Savanna Savanna Savana Grass Wooded Grassland

ARM NSA-Barrow Open Shrubland Tundra Tundra Bare Soil Open Shrubland

ARM TWP-Manus N/A Ocean Ocean Ocean Ocean

ARM TWP Darwin Savana Savanna Savana Broadleaf trees Wooded Grassland

Vegitation Type
CSE Reference Site Name

LBA

ARM

BALTEX

GAPP

CAMP

Figure 1 The Mean Bias Error (MBE) and Root 
Mean Square Error (RMSE) of EOP3 at all the sites. 

a. Monthly-mean air temperature (Tair) and humidity (qair)
All the models yielded small MBEs for Tair and qair. BMRC gave a RMSE of 
4.1 K for Tair and 2 g kg-1 for qair, but other models produced much smaller 
RMSEs (~2.5 K for Tair; ~1 g kg-1 for qair). 
b. Monthly-mean surface temperature (Tsfc)
All the models produced negative bias of Tsfc. NCEP yielded the smallest 
scattering, and UKMO yielded the largest scattering. BMRC data are not 
available.
c. Monthly-mean surface radiation (SWD, LWD)
SWD was over-predicted by all the models. LWD was under-predicted by 
NCEP and JMA while its prediction by UKMO is much better. JMA gave the 
maximum biases for SWD and LWD (30 W m-2), and UKMO gave the 
minimum biases. However, the errors in the two components counteract or 
compensate each other, which generally results in a small bias for the total 
downward radiation. As a result, both JMA and UKMO produced better total 
radiation than NCEP and BMRC. 
d. Monthly-mean surface heat fluxes (H, lE)
RMSEs in H of all the models (> 20 W m-2) are comparable to the order of the 
observed one (17 W m-2). JMA produced the smallest MBE and RMSE for H 
and lE and seems to be the best one. NCEP much over-predicted latent heat 
fluxes (or evapo-transpiration) while under-predicted sensible heat fluxes. 
BMRC produced the maximum RMSE value and a moderate MBE value.
e. Monthly-mean precipitation (P)
NCEP and JMA over-predicted precipitation while BMRC and UKMO under-
predicted it. The difference between NCEP MBE and BMRC MBE is even 
comparable to the magnitude of the observed precipitation (~2.5 mm d-1). 

Evaluation of representations of physical processes

All these schemes systematically over-predicted downward shortwave
radiation at almost all the sites. This over-estimation by GCMs was also found 
by many early studies (e.g. Cess et al. 1995). Ramanathan et al. (1995) 
suggested that the cloud absorption in the model might be less than observed. 
Recent evaluation by Wild et al. (2006) shows that atmospheric clear-sky 
absorption is under-estimated 10 W m-2 in many GCMs. If this is true for the 
CEOP participating GCMs, then about half of the errors in Fig. 1(b1) could be 
explained by the clear-sky absorption. 

General under-prediction of downward longwave radiation by NCEP and JMA 
is also found for many other models (e.g. Garratt and Prata 1996; Wild et al. 
2001). An example is shown in Fig. 2 for East Siberia Tundra site, where the 
longwave radiation was well predicted by UKMO whereas poorly predicted by 
other models. Therefore, we tend to believe longwave schemes rather than 
external factors (biomass burning, scale-mismatch etc.) should play the major 
role for the under-estimation. The RRTM, which is supposed to be the best for 
clear-sky radiation computation (Morcrette, 2002), indeed show small errors in 
NCEP model (see Fig. 1), but the Slingo and Wilderspin (1986) scheme used in 
UKMO shows even higher accuracy for all-sky conditions.

Figure 2 Monthly-mean diurnal variation of downward 
longwave radiation at Eastern Siberian Tundra site.

1. Radiation scheme

2. Cloud scheme
Figure 1 shows that JMA and NCEP over-predicted precipitation and BMRC 

under-predicted it. UKMO gave the smallest MBE. Fig. 3 shows errors in
forecasts of monthly-mean heavy precipitation are a major contributor to the 
total model biases. JMA and NCEP predicted more heavy-precipitation months 
while BMRC predicted fewer heavy-precipitation months. This suggests that 
Arakawa-Schubert scheme that is used in JMA and NCEP tends to predict more 
precipitation. 

Table 3 shows the total precipitation amount in the rainy season at individual 
sites for EOP3 (the rainy season is defined in Table 3). All the models show 
systematical and significant over-estimates of precipitation in some regions 
(HIM and CAB) or under-estimates in some other regions (DAR, MNS and 
NSA), suggesting that precipitation schemes in these GCMs also share some 
model deficiencies. 

Figure 3 Monthly mean precipitation of EOP3 at all the 
sites. 

3. Land surface scheme
Fig. 4 shows BMRC much over-predicted Tair and much under-predicted qair in the summer season (Oct-Dec) at LBA/Santarem. 

Similar biases are found at other LBA/sites (Manus and Pentanal) and BALTEX sites (Linderberg and Cabauw) in the summer season. 
By contrast, BMRC under-predicted air temperature in some cold regions (e.g. Tundra and NSA-Barrow). UKMO also shows similar 
large over-prediction of air temperature for the tropical regions (e.g. Amazon, Thailand, and Australian Darwin) in the summer and 
under-prediction for West Tibet. These large biases were caused by incorrect surface energy partition between sensible heat and latent 
heat. An example for Santarem is shown in Figs. 4(c) and 4(d). This explained why the RMSE of Tsfc, H, Tair and qair predicted by 
BMRC is larger than other models (see Fig.1). This result is not surprising because BMRC uses a simple bucket hydrological model that 
does not explicitly account for vegetation processes.

F A F A
LIN JJA 52.2 14.1 126 31 9 146 159 158 191
CAB JJA 52 4.9 21 31 26 116 150 159 164
SGP JJA 36.6 -97.5 175 90 89 419 400 400 385
BON JJA 40 -88.3 244 95 57 375 360 464 553
MON JJA 46.3 107.3 140 42 42 90 85 184 50
TON JJA 44.4 122.9 235 84 87 410 366 406 192
TIB JJA 32 91.9 363 131 198 350 403 407 99
HIM JJA 28 86.8 352 1157 769 648 569 1334 1950
NSC JJA 25 121.2 449 166 211 539 755 381 368
WPO MAM 7.1 134.3 770 571 522 981 977 998 1487
EIS MAM -0.2 100.3 877 395 421 371 402 1121 1007
MAN MAM -2.6 -60.2 786 311 397 655 777 606 1268
SAN MAM -3 -55 636 507 440 467 437 710 885
NSA JJA 71.3 -156.6 102 32 23 86 80 52 92
MNS MAM -2.1 147.4 1268 536 586 838 893 952 903
DAR DJF -12.4 130.9 1565 537 522 815 831 1210 926
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Table 3 Total precipitation in rainy seasons of EOP3 
at 16 sites where data are available (Bold row:- all 
the models overestimate; Italic row:- all the models 
underestimate).

Figure 4 Monthly mean values of EOP3at LBA-
Santarem site 

Figure 5 shows the relationship between errors in precipitation and errors in evapo-transpiration of NCEP and JMA at eight 
flux sites. NCEP gave a positive correlation between errors in precipitation and in evapo-transpiration, suggesting that the over-
prediction of precipitation by NCEP results in its over-prediction of evapo-transpiration and under-prediction of sensible heat 
fluxes (See Fig. 1). On the other hand, JMA gave a quite weak correlation, though both JMA and NCEP use the SiB2 land model. 

Figure 5 Comparison of 
model errors between GCM 
monthly-mean rainfall and 
evaporation

Figure 6 Monthly-mean 
diurnal variation of Tsfc in 
arid and semi-arid regionsEvaluation of precipitation diurnal cycle

Figure 7 Composite diurnal cycle 
of precipitation derived from in 
situ data and GCM output in rainy 
seasons. 

Figure 8 Diurnal cycle of 
precipitation derived from in situ
data at tropical sites and at four 
higher-latitude sites

1. Results from in situ data were comparable with those in the literature (not shown)
2. Fig. 7 shows the composite diurnal cycle of precipitation intensity and frequency pattern. It is shown that the peak of 

precipitation intensity occurs at 14 LST and 2 hours earlier than that of precipitation frequency.
3. Fig.7 shows a local minimum of precipitation intensity at 18 LST from in situ data, which has not been reported in the 

literature 

Evaluation of GLDAS

Figure 9 Tsfc monthly-mean diurnal variation

Figure 10 H & lE monthly-mean diurnal variation

Fig. 9 shows four examples of comparisons of monthly-mean diurnal 
variation of Tsfc between in situ data and three GLDAS products. At West 
Tibet, GLDAS does not improve skin temperature simulation compared to 
the GCMs (see Fig.6(a)). Nevertheless, GLDAS/CLM and Noah clearly 
reproduced the observed surface temperature at other three sites. This is not 
surprising because GLDAS assimilates remotely sensed surface skin 
temperature. GLDAS/Mosaic produced very clear cold biases at nighttime, 
which should be attributed to its model deficiency since all the forcing data 
and assimilation data are identical in the three land models. 

However, the three land models produced quite different fluxes, as shown 
in Fig. 10 for Bondville and Cabauw sites. Although both Noah and CLM 
well produced surface skin temperature at the two sites (See Fig.9), they 
yielded very different surface energy partition. GLDAS/Noah generally 
yielded better energy partition than CLM and Mosaic. For the summer 
season, not only all the modeled energy partitions deviate far from the 
observations, but also the differences among the models are comparable to 
the differences between models and measurements. These results indicate 
that (1) uncertainties in this data assimilation system are quite large and 
representations of key land processes and model parameters play a more 
important role than data assimilation technique, and (2) it is still difficult 
for a LDAS to generate reliable surface energy partition by only
assimilating surface temperature. It is expected that these uncertainties 
would decrease after the system assimilates soil moisture-relevant satellite 
data, such as low frequency data of the Advanced Microwave Scanning 
Radiometer (AMSR) instrument carried by NASA Earth-observation 
satellite Aqua, as demonstrated by Yang et al. (2006).

Conclusions

4. Fig.8 shows an afternoon peak and a nighttime 
peak. At the tropical sites (8a), the afternoon peak 
is much stronger than the nighttime one.At higher 
latitudes (8b), the afternoon peak is comparable to 
the nighttime. The nighttime peak time varies 
from site to site, and thus it is not clear in the 
composite diurnal pattern.

5. Figure 7 shows that all the models produced the 
afternoon peak, but no model is able to produce 
the 18 LST local minimum and the nighttime 
peak. For the afternoon peak, the frequency 
patterns of JMA and NCEP are most close to the 
observed one, but UKMO predicted 1-2 hours 
earlier and BMRC 4-5 hours earlier than the 
observed one. There is no remarkable difference 
in precipitation intensity and frequency between 
forecast and analysis output for both UKMO and 
MBRC. This implies the diurnal change is mainly 
determined by model’s nature rather than initial 
conditions.

Figure 6 shows that all the models under-predicted monthly-
mean diurnal range (maximum minus minimum temperature) 
of surface skin temperature at West Tibet and Mongolia. 
Similar bias is also found at other sites (East Tibet and Fort 
Peck) in arid and semi-arid regions. Therefore, under-
prediction of Tsfc diurnal range is a common phenomenon for 
arid and semi-arid regions and should be related to a model 
deficiency. This under-prediction implies that current land 
surface models may under-predict aerodynamic resistance or 
over-predict turbulent heat transfer capability for bare soil and 
sparse vegetation surfaces. In other words, current land 
models can well describe dense canopy processes but might be 
questionable for describing bare soil and sparse canopy 
processes. An example that improves representations of bare 
soil and sparse canopy processes was presented by Yang et al. 
(2006). 


