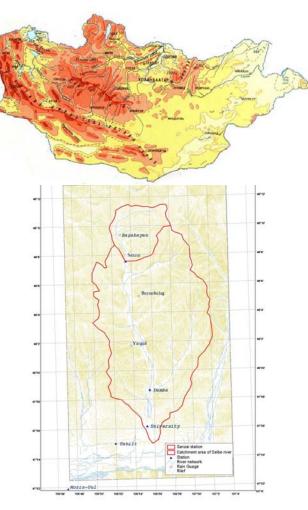
GEOSS/AWCI Demonsration project, Mongolia


The 3rd Asian Water Cycle Symposium 2-4 December, 2007, Oita International House, Beppu, Japan

Azzaya Dolgorsuren Prepared by Dr.Davaa Gombo Institute of Meteorology and Hydrology, Juulchny gudamj-5, Ulaanbaatar-46, Mongolia, 210646 meteoins@magicnet.mn watersect@yahoo.com azzaya23@yahoo.com

Stream basin characteristics

The selected Selbe stream basin is located in center of Mongolia, in the north of Ulaanbaatar, between the latitudes of 470 55' -480 15' N and the longitudes 1060 50'-1070 00'.

 The Selbe with 26.2 km length is draining an area of nearly 303 km2 in the Tuul Stream basin of 6300 km2. Land use types are described as urban, pasture and forest (forest area 177.94 sq.km). Geomorphology: floodplain, hilly slope, mountain.

Observation system

Two stations:

In the period 1985-1991 at the lower site-Dambadarjaa is operated. However, in 1994, this station was re-established. Since 1998, Selbe at Dambadarjaa gauge is operating temporary (operating only during warm period from May to October) in frame of the different national projects (Institute of Meteorology and Hydrology).

No.	Sites	Coordinates	Cactment area, km ²	Stream length, km	Basin mean elevation	Channel slope, %0
1	Upper basin- Sanzai	48° 07' 33" 106° 53' 25"	34.2	8.3	1620	21.3
2	Lower basin- Damba	47° 58' 24" 106° 55' 34"	188	26.2	1510	12.4

Observation system

7					
	SURFACE	Number	HYDROLOGICAL	Number	
	Air Temperature	2	Streamflow	2	
	Humidity	2	Reservoir (Water level, Outflow)	No	
	Wind	2	Groundwater Table	Not yet defined	
	Pressure	2	Evaporation	No	
	Precipitation	6	Soil Temperature	1	
	Snow Depth	1	Soil Moisture	1	
	Skin Temperature		Atmosphere	Number	
	Upward Shortwave Radiation		Planetary Boundary Layer Tower	No	
	Downward Shortwave Radiation		Pilot Baloon	No	
	Upward Longwave Radiation		Radiosonde	1	
	Downward Longwave Radiation		Radar	1	
	Net Radiation	1	Water Quality	Number	
	Sensible Heat Flux	Can be calculated at 1 station	Groundwater quality indicators	Not yet defined	
	Latent Heat Flux	Can be calculated at 1 station	Surface water quality indicators	2	
	Ground Heat Flux	1	Others	Number	
	CO2 Flux	No			
•					

Raingauges in the Selbe stream basin

	Sites	Elevatio Coordinates n, m Latitude Longitud		es Longitude
1	Sanzai	1583	48° 07' 35"	106° 53' 25"
2	Bayanbulag	1510	48° 05' 08''	106° 54' 42''
3	Yargait	1511	48° 01' 45"	106° 53' 47"
4	Damba	1258	47° 58' 41''	106° 55' 36"
5	University*	1299	47º 27'	106° 58'

- In 2005 due to cooperation between Japanese and Mongolian national hydrological committees for UNESCO, in upper Selbe stream have established AWS, which has the next sensors
- for wind speed and direction
- air temperature
- relative humidity
- Rainfall
- net radiation
- soil heat flux
- soil temperature
- soil moisture

Targets

• Environmental degradation (vegetation, soil degradation, deforestation and rapid urbanization and etc)

 Surface and ground water monitoring and modeling

To develop the information system for promoting the implementation of integrated water resources management (IWRM) in the Selbe and Tuul Stream Basins.

Proposed activities

No.	Activities	2008	2009	2010	2011
1	Hydrometeorological and water quality monitoring	X	X	X	X
2	Data integration system (input data preparation, quality control)			X	X
3	Improvement of in-situ observation network system	X	X	X	
4	Setting-up a Distributed Hydrological model	X	X	X	
5	Scenario studies: Land use change analysis, dry periods & etc	X			
6	Capacity building on Floods, Droughts & Water quality	X	X	X	
7	Parallel testing of the system at operational stage			X	X
8	IWRM plan development of Floods, Droughts & Water quality			X	X

Thank you for your attention

