Implementation Plan for the Korean Demonstration Project (KDP)

2007.12.3

Deg-Hyo Bae (dhbae@sejong.ac.kr)

Professor, Dept. of Civil & Env. Engrg., Sejong University, Korea

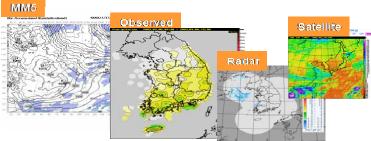
The Goal of GEOSS/AWCI

- ✓ To better understanding the mechanism of variability in the Asia water cycle
- ✓ To improve its predictability for various water resources applications.
- ✓ To help for mitigating water-related disasters (floods, droughts, water qualities)

The Goal of GEOSS

- ✓ To achieve comprehensive, coordinated and sustained observations of the Earth system
 - Improve monitoring of the changing state of the planet
 - Increase understanding of complex Earth processes
 - Enhance the prediction of the impacts of environmental change

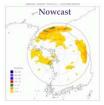
Three Targeted Issues and their Backgrounds for KDP


Use of Satellite and Numerical Data for Flood Management

* Objectives

- To utilize satellite data for flood and drought management
 - To develop a short- and long-term weather forecast system for the application of water resources management

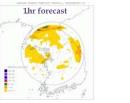
* Method

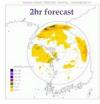


* Major Outcomes and Future Works

- Development of downscaling techniques for connecting global-meso-hydro scale model
- Development of satellite-based flood management scheme
- Design and implementation of weather forecasts for w.r. applications

Development of Radar Rainfall & Flood Forecasting System


0.5hr forecast

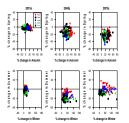

* **Objectives** - To develop a radar rainfall and flood forecasting system

for both urban and rural watersheds

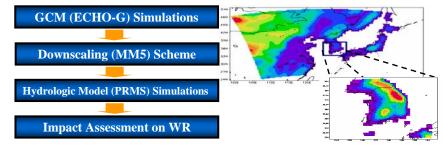
* Method

- Consists of four processes: Meteorological Forecasting Process, Hydrologic Observation Process, Hydrologic Modeling Process, and Urban Flood Forecasting & Warning Process

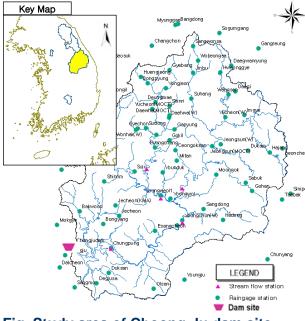
Major outcomes and Future Works


- To forecast real-time radar-driven rainfalls coupled with satellite data
- To provide algorithms for real-time flood forecast

Climatic Change Impact & Vulnerability Assessments on Water Resources


* Objectives

- To evaluate the climate change impact assessment on the whole Korean sub-basins

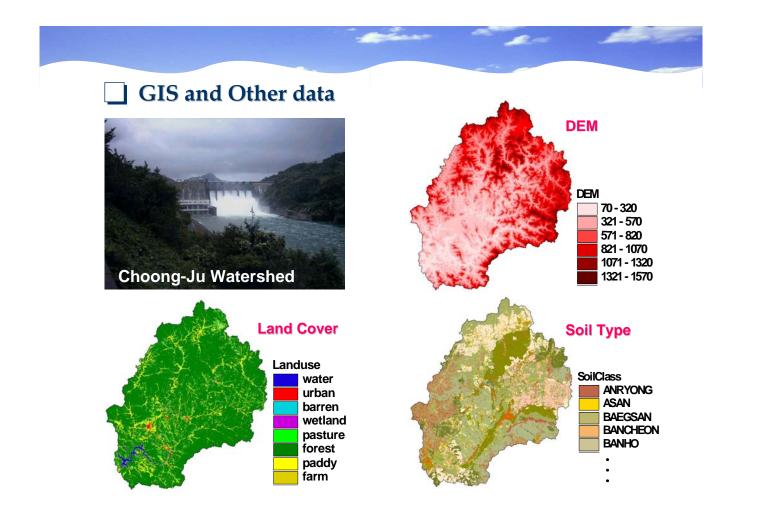

* Method

* Major Outcomes & Future Works

- Relative changes of annual mean P, T, ET and Q during the future periods relative to the reference period
- Understanding and reducing the uncertainties of climate change and their hydrologic applications

Nominated River Basin: Choong-Ju Dam Basin

Location	App. 128ºE, 37ºN
Basin Areas	6662 km ²
Catchment Lengths	321.9 km
Elevation	70-1570 EL.m
Land Use	Mountain
Annual MAP	1149 mm


Raingauge St.	46 (weather radar data)
Stage St.	5

Met. St. 3

Fig. Study area of Choong-Ju dam site

SURFACE		HYDROLOGICAL	
Air Temperature	3	Streamflow	5
Humidity	3	Reservoir (Water level, Outflow)	1
Wind	3	Groundwater Table	
Pressure	3	Evaporation	3
Precipitation	46	Soil Temperature	3
Snow Depth	3	Soil Moisture	
Skin Temperature	3	ATMOSPHERE	
Upward Shortwave Radiation		Planetary Boundary Layer Tower	
Downward Longwave Radiation		Pilot Baloon	
Net Radiation	3	Radiosonde	
Sensible Heat Flux		Radar	availabl
Latent Heat Flux		WATER QUALITY	
Ground Heat Flux		Groundwater Quality Indicators	8
CO2 Flux		Surface water Quality Indicators	26

Remarks - Korea have 12 upper air measurement stations and 2 CO2 flux stations
- 3 radiosonde stations (Sokcho, Pohang, Gosan)

Hydrologic Models

- Hydraulic Design
- Rational formula
- Unit hydrograph
- Synthetic unit hydrograph
- TANK model

Flood Analysis

- HEC-1, HEC-2
- SSARR, SWM, SWMM, USGS, DAMBRK
- Storage function model, Clark
- PRMS, SLURP, SWAT, TOPMODEL

• Urban Runoff Design / Analysis

- ILLUDAS
- RRL
- SWMM
- Rational formula

• Flood Event Analysis

- Storage function model
- HEC-1
- Sacramento model

Thank you for your attention