

Why Punatsangchhu or Basin I

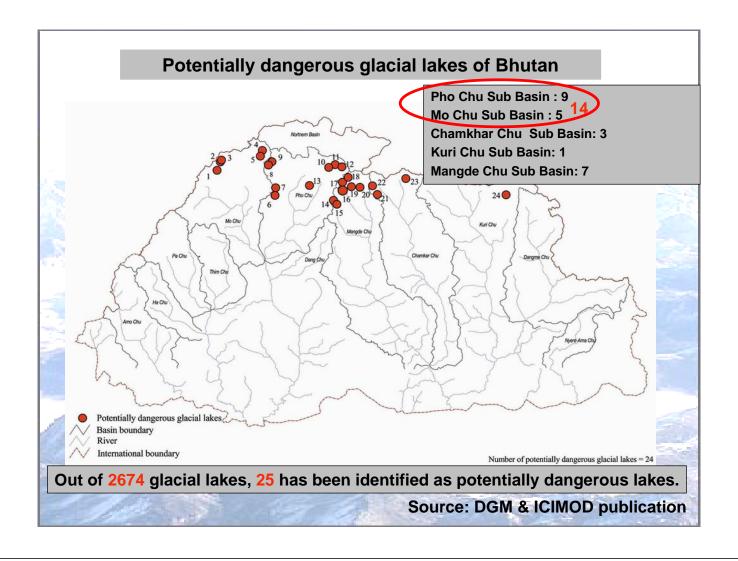
- Economic development through construction of hydropower projects.
- Add on social benefits such as schools, health facilities etc.
- Basin prone to GLOF's, so appropriate for flood studies as GLOF is a real threat now as a result of global warming due to climate change.
- Climate change impacts changes in flow regimes of rivers.

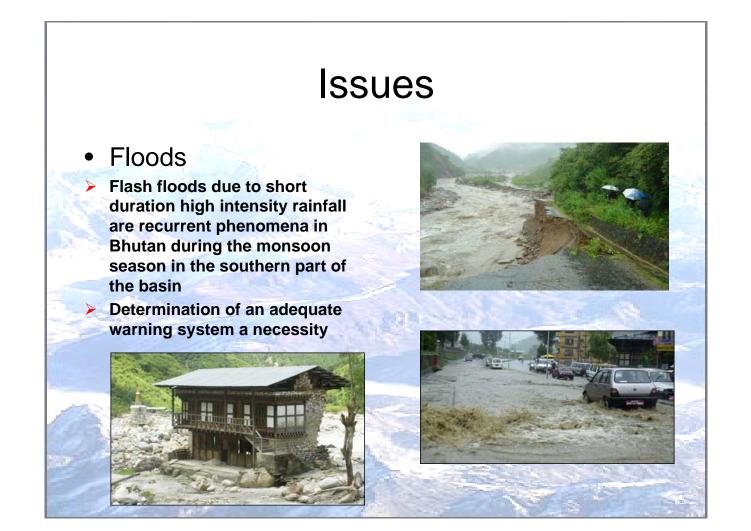
Punatsangchhu Basin or Basin II

Punatsangchhu Basin

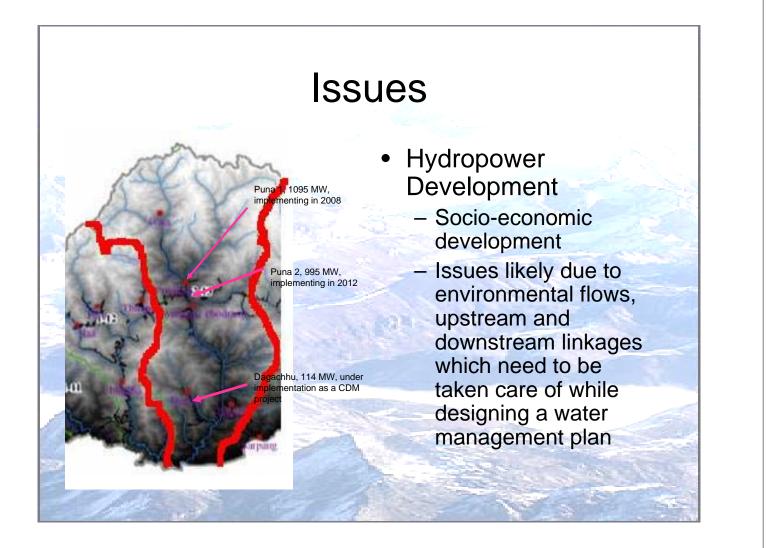
Country: Bhutan

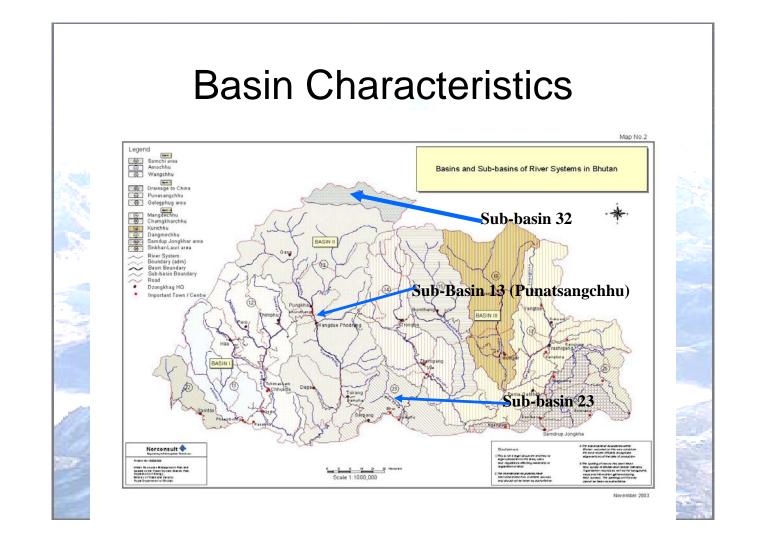
Basin Name: Punatsangchhu or Basin II

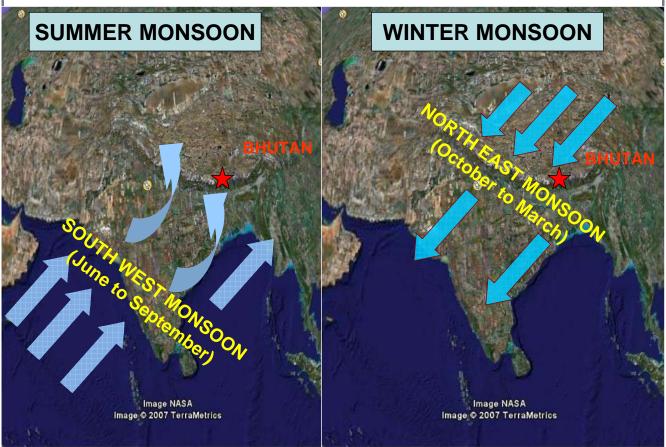

Basin Area: 13, 263 km²


Latitude: E89º21'' - 90º24''

Longitude: N26º42'' – 28º18''


Altitude: 100 masl - >5000 masl

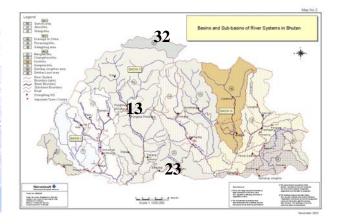

<text>


<section-header><section-header>

			h e re e	4 - 4 - 4	iee		
	Main N/S River	SIN C	harac N/S River Origin Table I : Basin	Drainage Area km ²	Approx. Length of N/S River (km)	Approx. Average River Slope (%)	
Sub-Basin 13- Punatsangchhu	Punatsangchhu, Mochhu, Phochhu	Dangchhu,	Bhutan Bhutan Bhutan	10,355	134 84 86 57	0.8 4.3 3.6 4.6	
Multi-River Basin 13 – Gelephu	Sum for basin	Sarpang Khola Mau Khola	Bhutan Bhutan Bhutan	1,956 145 811	Na 21 21	Na 7.6 1.0	
Multi-River Basin 32 – Drainage to the north	Sum for basin		Bhutan	952	na	na	

Climatic Condition

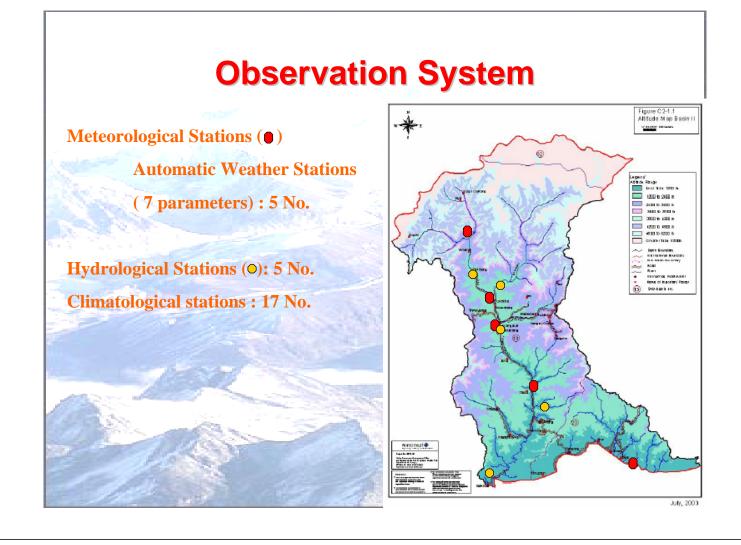
Climatic Condition


 Bhutan Climatic is generally dominated by monsoon winds

12

- Dry winter and wet summer monsoon
- Climate of Bhutan is affected by
 - Latitude
 - Altitude
 - Prevailing Wind Direction
 - Orientation of Mountain Ranges
 - Local Winds
 - Vegetation

Land Use and Soil Type


- Land use
 - Agricultural Land Use: 517 km2 (3.9 %) of basin area
 - Sub-basin 13: 418 km2 (17.8 %)
 - Sub-basin 23: 89 km2 (3.7 %)
 - Basin 32 has no agricultural land
- Soil Type
 - Detailed soil survey report not available for the whole basin.
 Soil survey reports with varying levels of details available for specific locations in the basin.

13

Socio-economic Information

- Population: > 200.000
- Migration: Evidence of rural-urban migration
- Income and Expenditure: Income from agriculture and livestock, expenditure on food, health and religious ceremonies
- Employment: Agriculture main source of employment, others include tourism, casual worker, civil service and trade
- **Poverty:** Some areas in the basin vulnerable (vulnerability arrived at by considering income, food security, access to facilities and services)
- Social Infrastructure: Basin has 17% of the educational infrastructure. Has access to health through 7 hospitals, 58 basic Health Units and 170+ Outreach Clinics

Models and GIS Data Availability

- Database: HYDATA (CEH Wallingford)
- Hydrological Models
 - DAMBRK, HEC-RAS for simulating Glacial Lake Outburst Floods
 Working on Mike 11 mathematical modeling for the Punatsangchhu basin
 - GeoSFM (USGS): Geo stream flow model with inputs from rainfall estimation software
- Meteorological Models
 - RFE (Rainfall Estimation) using IR, AMSU, SSMI (NOAA)
- GIS data
 - RS: Aster and IRS
 - GD: Aster and SRTM DEM
 - PD: Hydro-met stations

Implementation Schedule

	2008/I	2008/11	2009/I	2009/11	2010/I	2010/II	2011/I	2011/II
Hydro-meteorological and water quality monitoring								
Data integration system (input data preparation, quality check)								
Improvement of in-situ observation network system								
Setting-up a Distributed Hydrological Model (Optional LSS)				1			-	
Scenario Studies: Land use change analysis, dry periods, etc								
Capacity building on Floods, Droughts and Water Quality								
Parallel testing of the system at operational stage		1						
IWRM plan development floods, droughts and water quality	~							

