# **Capacity Building Program in Korea**

2007. 12. 2

## Deg-Hyo Bae (dhbae@sejong.ac.kr)

Professor, Dept. of Civil & Env. Engrg., Sejong University, Korea



The Goals of Capacity Building Program(CBP) on AWCI

 To facilitate the use of earth observations systems for the Asia Pacific countries

- Data fusion of remote sensing, numerical forecasts and local observation

- Development of downscaling algorithm for basin-scale hydrologic application

**2** Questions

• What can I contribute for CBP ?

• What is the benefits from CBP ?

# **Review of capacity building program**

### Goals

- To facilitate the use of earth observations systems for the Asia Pacific countries

### Target Groups

- Researchers / Scientists
- Professional / Practitioner
- Administrative / Local government officials

### Methodology

- Short and long-term training
- Online training

## • Strategic Implementation

- Demonstration approach : 17 river basins
- Working group approach : 3 working groups
  - Observation convergence, data integration, information sharing

### **Korean Demonstration Project**

- Use of Satellite and Numerical Forecast Data for Flood Management
- Development of Radar Rainfall & Flood Forecasting System
- Climatic Change Impact & Vulnerability Assessments on Water Resources in Korean Peninsula

### Working Group Approach - Flood WG

- Goal : build up a scientific basis for suitable flood risk management for each country through the full utilization of global, regional and in-situ data
  - Objective 1 : to improve real-time flood forecasting system for short-term crisis management
  - Objective 2 : to assess flood risk and vulnerability and to make flood scenarios for long-term integrated flood risk management





|                                           |                                                                                                                                            |             | Ba                                      | nglac                                   | lesh             |                                  | Bhutar                   | Cam | bodia C                    | hina                       | Indonesia                 | Lao PDR          | Mongolia    | Myanmar              |                              | Phil                 | lipine                        | es               | Sri Lanka                                     |                   | Thaila                                   | and                  |                    | Vie               | tnan          | J,                  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-----------------------------------------|------------------|----------------------------------|--------------------------|-----|----------------------------|----------------------------|---------------------------|------------------|-------------|----------------------|------------------------------|----------------------|-------------------------------|------------------|-----------------------------------------------|-------------------|------------------------------------------|----------------------|--------------------|-------------------|---------------|---------------------|
| Lege<br>3 : b<br>2 : aj<br>1 : p<br>0 : n | nd :<br>eing applied<br>pplicable<br>otentially applicable<br>ot applicable                                                                | RS date     | On-site monitoring                      | Software                                | Training         | Information dissemination<br>sys | lood forecasting and EWS |     | ood forecasting and warnin | ood and drought forecastin | lood and drought risk map | Flood            | Drought     | Flash flood forecast | dar and sat data use trainir | Access to GCM output | -situ and sat data integratic | Flood hazard map | Commate criange scenario<br>Capacity building | Data assimilation | Cliamte model for<br>long range forecast | Radar interpretation | Meteorological EWS | Flood forecasting | Water quality | Drought forecasting |
| CEOP                                      | data integration service<br>QC service                                                                                                     | 2           | 2                                       | 0                                       | 0                | 0                                | 2                        | 2   | 11<br>2<br>2               | 2                          | 2                         | 2                | 2           | 2                    | 0<br>0                       | 2                    | .⊑<br>2<br>2                  | 0                | 0 0<br>0 0                                    | 2                 | 0                                        | 0                    | 0                  | 2                 | 1             | 1                   |
| GWSP                                      | Global DB(Digital Atalas, Dam)<br>training &research workshop<br>University curricula                                                      | 1<br>0<br>0 | 0                                       | 000                                     | 01               | 0                                | 1<br>1<br>C              |     | 1<br>1<br>0                | 1<br>1<br>0                | 1<br>1<br>0               | 1<br>1<br>0      | 1<br>1<br>0 | 1<br>1<br>0          | 0000                         | 000                  | 0 1 0                         | 1<br>1<br>0      | 0 0<br>0 1<br>0 1                             | 00000             | 0                                        | 0<br>0               | 0                  | 1<br>1<br>0       | 0 1 0         | 010                 |
| UNU                                       | Web-based teaching package<br>flood inundation modelling<br>loss estimation                                                                | 0           | 0                                       | 0                                       | 1                | 0                                | C<br>2<br>1              | 2   | 0<br>2<br>1                | 0<br>2<br>1                | 0<br>2<br>1               | 0<br>2<br>1      | 1           | 0<br>2<br>1          | 0                            | 0                    | 0                             | 0<br>2<br>1      | 0 1<br>0 1<br>0 1                             | 0                 | 0                                        | 0                    | 0                  | 0<br>2<br>1       | 0             | 0<br>1<br>1         |
| ICHARM                                    | rainfall downscaling and forecast<br>Global Flood Alert System                                                                             | 2           | 0                                       | 0                                       | 1                | 0                                | 2                        | 2   | 2                          | 2                          | 2                         | 2                | 0           | 2                    | 0                            | 0                    | 0                             | 2                | 0 1                                           | 0                 | 0                                        | 0                    | 0                  | 2                 | 0             | 1                   |
|                                           | flood hazard map training<br>river and dam engineering training<br>Master course on flood mitigation                                       | 0           | 0                                       | 0                                       | 2                | 0                                | 1                        |     | 1                          | 1<br>1<br>1                | 1<br>1<br>1               | 1<br>1<br>1      | 0           | 1<br>1<br>1          | 0                            | 0                    | 0                             | 1                | 0 2<br>0 2<br>0 2                             | 0                 | 0                                        | 0<br>0<br>0          | 0                  | 1                 | 0             | ololo               |
| MRC                                       | river basin management training<br>water quality analysis training<br>flood hazard mapping training<br>flood emergency management training | 0 0 0       | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 2<br>2<br>2<br>2 | 0                                | 1<br>C<br>2              | 2   | 1<br>0<br>2<br>2           | 1<br>0<br>2<br>2           | 1<br>0<br>2<br>2          | 1<br>0<br>2<br>2 | 0           | 1<br>0<br>2<br>2     | 0 0 0                        | 0000                 | 0 0 0                         | 1<br>0<br>2<br>2 | 0 2<br>0 2<br>0 2<br>0 2                      | 0 0 0 0           | 000000000000000000000000000000000000000  | 0<br>0<br>0          | 0 0 0              | 1<br>0<br>2<br>2  | 1<br>2<br>0   | 0000                |
|                                           | mathematical modelling training<br>satellite rain estimation training                                                                      | 0           | 0                                       | 0                                       | 2                | 0                                | 1                        |     | 1                          | 1                          | 1                         | 1                | 0           | 1                    | 0                            | 0                    | 0                             | 1                | 0 2                                           | 0                 | 0                                        | 0                    | 0                  | 1                 | 0             | 1                   |
| Uhina                                     | Trioci and drought management syster<br>training<br>data&product access                                                                    | 0           | 0                                       | 0                                       | 2                | 1<br>0<br>2                      | 1<br>C<br>C              |     | 1<br>0<br>0                | 1<br>0<br>0                | 1<br>0<br>0               | 1<br>0<br>0      | 0           | 1<br>0<br>0          | 0                            | 0                    | 0                             | 0                | 0 2 0 2                                       | 0                 | 0                                        | 0                    | 0                  | 1<br>0<br>0       | 0             | 100                 |
| PUB<br>JAXA/AII                           | WGs and projects<br>Mini-projects                                                                                                          | 0           | 0                                       | 0                                       | 1                | 0                                | 1                        | 2   | 1                          | 1                          | 1                         | 1                | 1           | 1                    | 0                            | 0                    | 0                             | 1                | 0 1                                           | 1                 | 1                                        | 0                    | 0                  | 1                 | 0             | 0 0                 |
| MAIRS                                     | Sentinel Asia<br>Enhanced observation                                                                                                      | 1           | 0                                       | 0                                       | 2                | 2                                | 2                        | 2   | 2                          | 2                          | 2                         | 2                | 0           | 2                    | 0                            | 0                    | 2                             | 2                | 0 2                                           | 0                 | 0                                        | 0                    | 0                  | 2                 | 0             | 0 0                 |
|                                           | regional model development                                                                                                                 | 0           | 0                                       | 0                                       | 0                | 1                                | C                        |     | 0                          | 0                          | 0                         | 0                | 0           | 0                    | 0                            | 0                    | 0                             | 0                | 0 0                                           | 1                 | 1                                        | 0                    | 0                  | 0                 | •             | 1                   |



# Thank you for your attention

# Needs and Proposals for Capacity Building in Korea





# Needs-Interaction technology between atmospheric sciences and hydrology

### • Numerical weather predictions at KMA/MOST

- GDAPS for 110×110 and 220×220km
- RDAPS for 30×30km (5-km res. Test)
- GTS network for global observations of on-site and RS data
- Short-term(48 hrs), weekly(48hr-7days), long-term (monthly, seasonal, bi-annual) weather forecast information are provided

### Real-time flood forecasts at FCCs/MOCT

- Operate event-oriented FF model
- Collect real-time prec. and stage data by telemeters

### O Uncertainties of flood forecasts

- inaccurate information of weather forecasts and runoff simulations
- non-existence of interaction technology between these two fields

# Needs-Interaction technology between atmospheric sciences and hydrology

#### Evaluation of these interaction

- Weather forecasts system
- Flow simulations system
- Met. and hydro. observation systems

### Regional requirement under existing infrastructure

- Development of technology for weather forecast improvement
- Distributed-type hydrologic modeling with RS data
- Interaction technology between these two fields
- Need 1- Real-time flood forecasting technology by using short-term weather forecast
- Need 2- Development of flash flood guidance system
- Need 3- Wise use of satellite data and weather forecast information for water resource management

## Porposals-data collection and technology development on demonstration basin for capacity building

### Demonstration basin – data collection



| Characteristics | of Choong-Ju basin      |
|-----------------|-------------------------|
| Location        | App. 128ºE, 37ºN        |
| Basin Areas     | 6662 km <sup>2</sup>    |
| Catchment Leng  | ths 321.9 km            |
| Elevation       | 70-1570 EL.m            |
| Land Use        | Mountain                |
| Annual MAP      | 1149 mm                 |
|                 |                         |
| Available data  |                         |
| Raingauge St.   | 46 (weather radar data) |
| Stage St.       | 5                       |
| Evaporation     | Pan data                |
| Ltaporation     |                         |
| GIS             | DEM, Landuse, Soil map  |
|                 |                         |

# Porposals-data collection and technology development on demonstration basin for capacity building

- Technology development Interactions between atmosphere and hydrology
  - Understanding numerical weather forecasts according to forecast lead time (for both KMA and AWCI outputs)
  - Use of satellite data for enhancement of water resources management and also for flood management
  - Application of various runoff models (conceptual, distributed models)
  - Developing interaction technologies between these two fields for both flood forecasting and water resources management

• Regional requirement under existing infrastructure