

models using only natural forcings 19 simulations by 5 models — observations models using both natural and anthropogenic forcings 58 simulations by 14 models

<u>Observed</u> rate of sea level rise and <u>estimated</u> contributions from different sources.

Source of sea level rise	Rate of sea level 1961–2003	rise (mm per year) 1993–2003
Thermal expansion	0.42 ± 0.12	<u> 1.6 ± 0.5</u>
Glaciers and ice caps	0.50 ± 0.18	<u>0.77 ± 0.22</u>
Greenland Ice Sheet	0.05 ± 0.12	<u>0.21 ± 0.07</u>
Antarctic Ice Sheet	0.14 ± 0.41	<u>0.21 ± 0.35</u>
Sum of individual climate contributions to sea level rise	1.1 ± 0.5	<u>2.8 ± 0.7</u>
Observed total sea level rise	1.8 ± 0.5^{a}	3.1 ± 0.7ª
Difference (Observed minus sum of estimated climate contributions)	0.7 ± 0.7	<u>0.3 + 1.0</u>

Changes in heavy precipitation frequencies >> Changes in precipitation totals

Increase of Heavy Rainfall Events in USA

Source: http://www.ncdc.noaa.gov/ol/climate/research/gcps/papers/amsbull/amsbull.html

Increase of Heavy Rainfall Events in Germany

Source: Wetterstation Hohenpeißenberg

PDSI: a prominent index of drought and measures the cumulative deficit in surface land moisture by incorporating previous precipitation and estimates of moisture drawn into the atmosphere into a hydrological accounting system.

Change in Annual Rainfall in Japan

Recent trends, assessment of human influence on the trend and projections for extreme weather events for which there is an observed late-20th century trend.

Phenomenon ^a and direction of trend	Likelihood that trend occurred in late 20th century (typically post 1960)	Likelihood of a human contribution to observed trend ^ь	Likelihood of future trends based on projections for 21st century using SRES scenarios
Warmer and fewer cold days and nights over most land areas	Very likely°	Likely ^d	Virtually certain ^d
Warmer and more frequent hot days and nights over most land areas	Very likely ^e	Likely (nights) ^d	Virtually certain ^d
Warm spells/heat waves. Frequency increases over most land areas	Likely	More likely than not ^f	Very likely
Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas	Likely	More likely than not ^f	Very likely
Area affected by droughts increases	<i>Likely</i> in many regions since 1970s	More likely than not	Likely
Intense tropical cyclone activity increases	<i>Likely</i> in some regions since 1970	More likely than not ^f	Likely
Increased incidence of extreme high sea level (excludes tsunamis) ^g	Likely	More likely than not ^{f,h}	Likely

Heavy Rainfall by Typhoons in Tone River from the Simulation by RCM20

Adaptation to the Global Climate Change

Climate Change Monitoring: in-situ + satellite + re-analysis

Satellite Data

19.35, 22.235, 37.0 and 85.5 GHz

Set up a constant of a const

19.35, 22.235, 37.0 and 85.5 GHz

Long Term Application of 2.5 x 2.5 Degrees Area including Validation Sites (JJA Average)

Variable Trend of Soil Moisture (JJA, 1988-2006)

Preliminary Design for Multi-scale Land Impact Research by of L-A Coupled DAS

Regional-scale approach by L-A DAS without CMDAS

■ Extent: 40°E - 160°E and 0°N - 60°N

Grid size: $25 \text{ km} \rightarrow nx = 355$, ny = 223, nz = 35

■ Meso-scale "mobile" approach by L-A DAS with CMDAS

Point-scale by the CEOP Reference Sites Network +

Adaptation to the Global Climate Change

Climate Change Monitoring: in-situ + satellite + re-analysis

Operation Optimization by Making Maximum Use of Prediction: down-scaling and optimization schemes

Dam Operation Optimization System by Using **Rainfall Forecasting**

Adaptation to the Global Climate Change

Climate Change Monitoring: in-situ + satellite + re-analysis

Operation Optimization by Making Maximum Use of Prediction: down-scaling and optimization schemes

Consensus on for Land-use and Water Resources Management: decision making support

Consensus Building Cycle for Climate Change Adaptation

© GEO Secretariat

Consensus Building Cycle for Climate Change Adaptation

