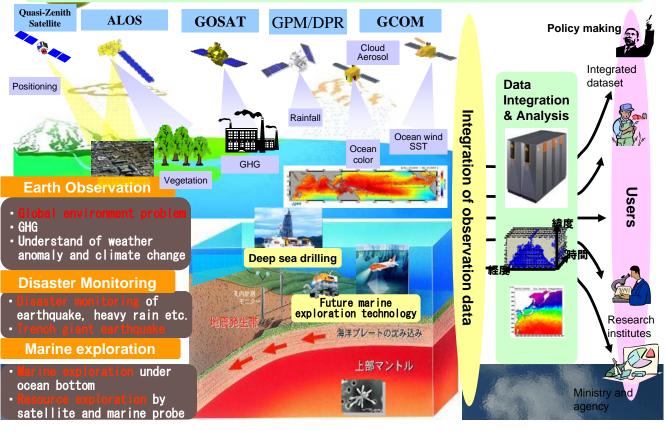
JAXA's Water Cycle Observation Programs and Applications

Japan Aerospace Exploration Agency

Japan's Basic Strategy for Earth Observation

Council for Science & Technology Policy (March 2005)

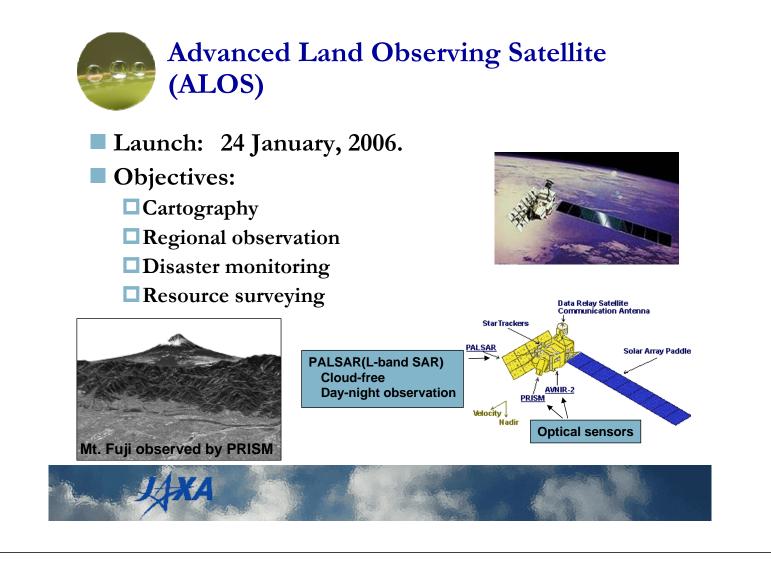
- Needs for an integrated observation by satellites, ships, buoys, ground stations and so on
- Establishment of a integrated observation system based upon user needs
- One of tools for policy making
- Contribution to GEOSS, especially in the following 3 Societal Benefit Areas
 - □ Water, Climate & Disaster


A National Key Technology

"Integrated Marine Exploration and Earth Observation System"

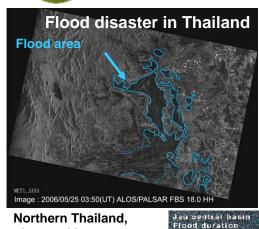
- Earth Observation
- Disaster Monitoring
- Marine Exploration

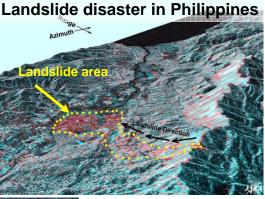
Integrated Marine Exploration and Earth Observation System"


Establishment of a fundamental system for Earth observation, disaster monitoring and marine exploration system as a national key technology for Japanese national security

Japan's EO Long Term Plan

Japanese Contribution Field	Observation Parameter	JEY Sensor Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Reduction and Prevention of Disasters	Land-cover change, volcanic ash fall, flooded area, etc.	Passive optical sensor (Visible and IR high resolution sensor)	Ten	a/AST	PR	SM : Sp	ctral Ban	SM, AV	7um, Beac	lution 22 Sr d), Russolu	. Swath	Disaster (optical 7Dkm(Nadir Swath 70k		oring M	ssion		ter Mo			'n
	Crustal deformation, biomass, flooded area, etc.	Active radio wave sensor (L-band synthetic aperture radar)		P	ALSAR : L	AL pand 1270	DS / PA OHz. Reso		Swath 40	am=70km	Disa (SA	aster M	onitorin	g Miss	on	Π				
	3D structure of precipitation, soil moisture, etc.	Active radio wave sensor (Precipitation radar)	TRM	M/PR						Ku band 1	0.60Hz, 1	GF				ncy Pre Resolutio		\mathbf{T}		•
Climate Change	Precipitation, water vapor, sea surface temperature, etc.	Active microwave sensor (Microwave radiometer)		AqualA S-II/AM	MSR-E SR							S <mark>OM-W</mark>			al Resolu	tion 5-50	ka		-	
including Water Cycle Variation	Sea surface wind vector, etc.	Active radio wave sensor (Microwave scatterometer)	ADEO	8-II/Sea	Winds								_	GCOM-		owave	Scatte	romete	vr.	
\backslash	Cloud optical thickness, aerosol optical thickness, land biomass, etc.	Passive optical sensor (Multi- spectral radiometer)	ADEO	S-II/GLI								Spectral	M-C/S	SLI -12µm(22)	th, multiple	polarizati	an/directic			
	3D distribution of cloud and aerosol, etc.	Active radio wave sensor (Cloud profiling radar)											thCAR Doep ler		nge Reso	lution 50	0a. Field	d of View	650n	
Global Warming and Carbon Cycle Change	Carbon dioxide(CO ₂), methane(CH ₄), etc.	Passive optical sensor (IR spectrometer)	ADEO	\$-11/1LA	S-II		4	Spect Swath Spati	SAT / C ral Range Il Resolutio t Accurace	0.78~ approv an Skim(N	4.3µm(5 1000km, adir),						ervatio	n Sate	lite	
		Active optical sensor (LIDAR)																		
						ed Proj				d Proje			·			lementa				


Japanese Satellite/Japanese Sensor, Foreign satellite/Foreign Sensor Legends: Satellite name/Sensor name

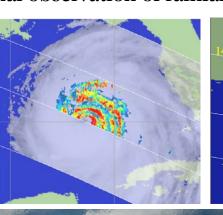

Observation from space plays significant role for disaster management

-43 daver

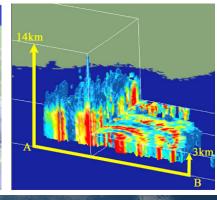
Flood monitoring

Northern Thailand, observed by ALOS/PALSAR

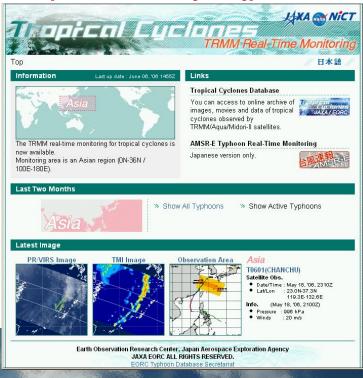
Leyte Island, Philippines, observed by ALOS/PALSAR


Jau River, Amazon, Brazil, observed by JERS-1/SAR

Tropical Rainfall Measuring Mission (TRMM)


- Japan-U.S. joint mission, flying <u>since</u> <u>Nov. 1997</u>
- World's first space-borne precipitation radar (PR) with microwave radiometer and visible-infrared sensor.

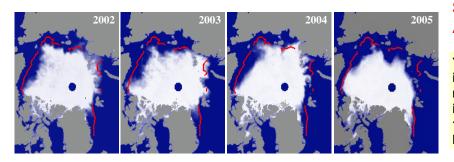
Hurricane KATRINA approaching South US, observed by TRMM at 0323Z 28 Aug. 2005.



0.00

TRMM Tropical Cyclone Real-time Monitoring (North-western Pacific)

- Near real-time browse images of tropical cyclones (typhoons) for the North-western Pacific region, observed by TRMM is available.
- Database of past tropical cyclones for global region, observed by TRMM, AMSR and AMSR-E, are also available.


http://www.eorc.jaxa.jp/TRMM/

Advanced Microwave Scanning Radiometer for EOS (AMSR-E)

Observing various shapes of water over ocean (water vapor, precipitation, cloud water, SST, and sea ice) and land (soil moisture and snow water equivalence).

Four-years of continuous data records have been archived from 2002.

Sea ice monitoring by AMSR-E.

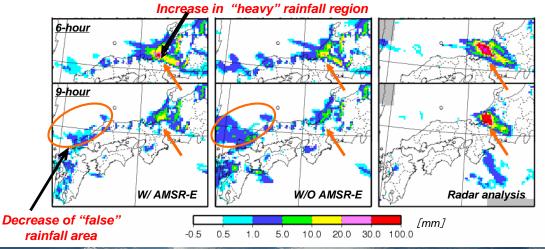
Yearly changes of monthly sea ice distribution over north polar regions in summer (red lines indicate average extent between 1988 and 2000, provided by NSIDC).

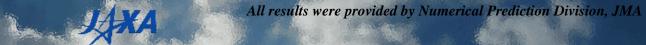
Future mission: Global Precipitation Measurement (GPM)

Constellation Core Satellite Dual-frequency Precipitation Radar Satellites and microwave radiometer Each carrying microwave radiometers, provided by Observation of rainfall with more accurate and higher resolution international partners More frequent Observation Adjustment of data from constellation satellites International Partners : NOAA(US), **JAXA** (Japan) **Dual-frequency Precipitation Radar** NASA(US), JAXA (Japan), NASA(US) CNES/ISRO(France/India) Satellite bus, microwave radiometer and others **Global Observation**

every 3 hours

- Establish and demonstrate global and long-term Earth observation system for understanding climate variability and water-energy cycle.
- 2 satellites (GCOM-W and C) series of 3 generations with 1-year overlap will result in over 13 years homogeneous and steady observation. (W: water and C: climate)
- GCOM-W will focus on variability of global water-energy cycle and extend successful AMSR-E observation to contribute to world water relevant issues.

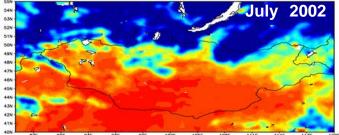

	aracteristics GCOM-W	GCOM-C	
Design			
Orbit (TBD)	Sun-synchronous Altitude: 699.6km Inclination: 98.19deg Asc. local time: 13:30	 Sun-synchronous Altitude: 798km Inclination: 99.36deg Dsc. local time: 10:30 	
Instruments	AMSR2 Microwave imager	SGLI Near-UV ~ TIR imager	AMSR2 of GCOM-W satellites
Launch Date	JFY 2011	JFY 2012	Satemites
Mission Life	5 years (×3 satell		
Launch Vehicle	Н		



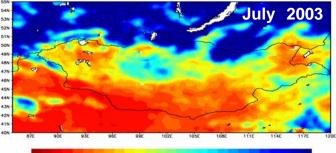
Expected application (1): Numerical Weather Prediction

Japan Meteorological Agency (JMA) started to use AMSR-E data for the meso-scale numerical weather prediction from November 2004, and for global model from May 2006.

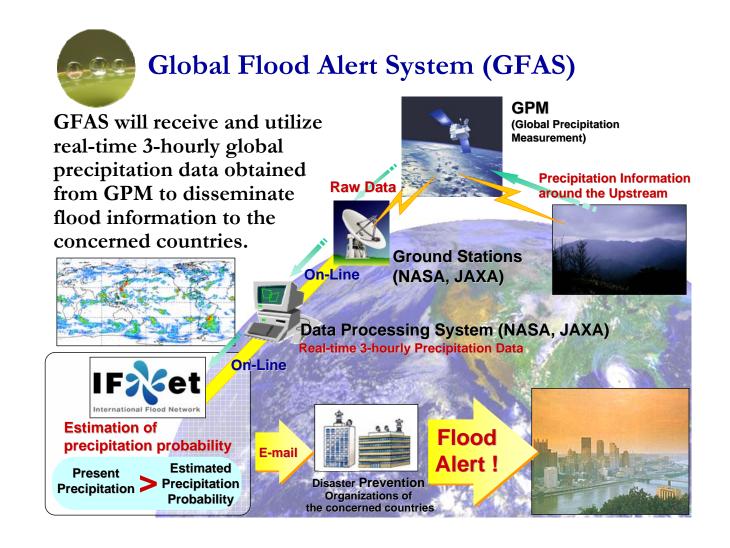
Data assimilation experiment for Fukui heavy rain in July 2004

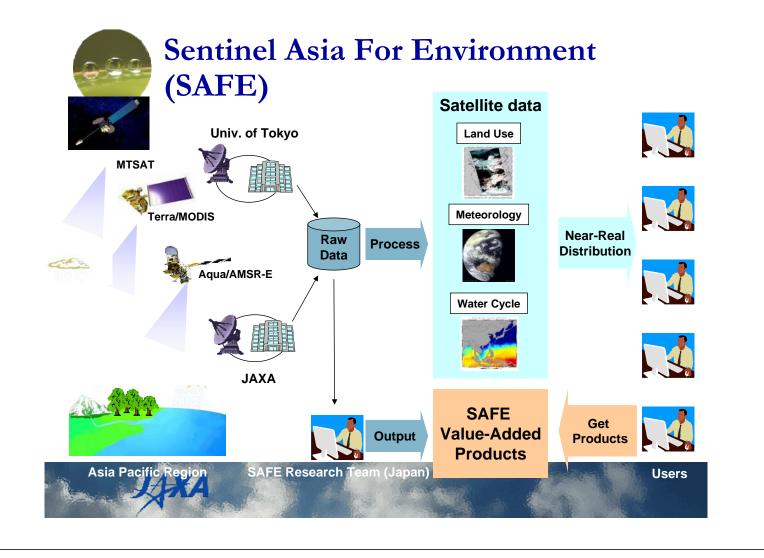


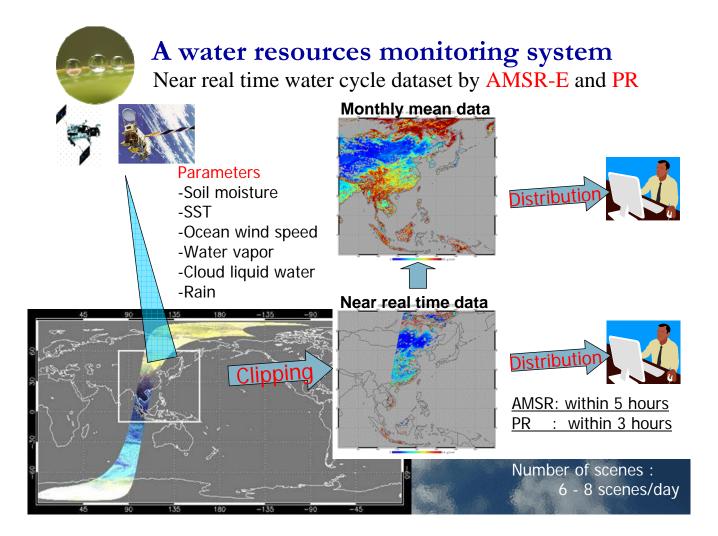
Expected application (2): Monitoring of soil moisture content


- Soil moisture is important in regional agricultural management and in regional/global climate.
- Because of its fine resolution, AMSR-E currently has the best capability for soil moisture monitoring.
- The wetter land surface condition in 2003 derived from AMSR/AMSR-E is consistent with that year's large amounts of winter snow and summer rain.

Monthly average soil moisture maps of Mongolia


200207 AMSR-E Soil Moisture Content




200307 AMSR Soil Moisture Content

This is a cooperative research project between JAXA, Unv. of Tokyo and Hiroshima Univ.

CEOP Satellite Dataset

- JAXA will produce ALOS datasets in addition to existing datasets of ADEOS-II, TRIMM, etc.
- ALOS datasets will consist of Reference Site (RS) dataset , River Basin dataset and agricultural dataset.

Satellite	Sensor	Parameter	Processing center	
ADEOS-II	GLI	Cloud Optical Thickness, Aerosol radiance, Vegetation Index, Chlorophyll-a, Snow Grain Size, Cloud flagetc.		
	AMSR	JAXA		
Aqua	AMSR-E	speed, Water vapor, Soil moisture, Snow water etc.		
	PR			
TRMM	TMI	Brightness temperature, Surface rain, Cloud ice/liquid water, Precipitation ice/water	NASA/GSFC	
DMSP- 13,14,15	SSM/I	Brightness temperature	NASA/GHRC	
	PRISM	Radiance		
ALOS	AVNIR-2	Radiance	ЈАХА	
	PALSAR	Amplitude		

CEOP Reference Site

Reference Site Dataset will produced in order of priority.

E:RS Top10RS

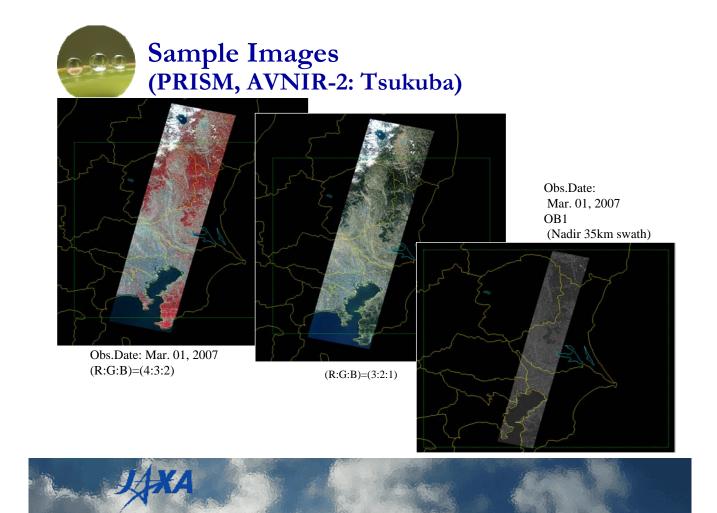
Observed scenes and plans for RS

		Reference Site		Obs	erved scenes	*1 5		Observation plan ^{*2}				
1	No. Reference Site Name		DDICM]	PALSAR		PRISM ^{*3}		PALSAR		
		PRISM	AVNIR-2	FBD343	PLR215	SCAN	PRISM	AVNIR-2	FBD343	PLR215	SCAN	
	1	Mongolia /Mandalgobi	50	24	16	20	5	9,10,11	9,16,17	12,13,14	-	16
	2	Mongolia /Ulaanbaatar	34	13	10	27	8	9,10,11	9,16,17	12,13,14	-	16
	3	Tibet/Naqu	35	32	15	49	2	9,10,11	9,16,17	12,13,14	-	16
	4	Tibet/Gaize	37	26	5	10	9	9,10,11	9,16,17	12,13,14	-	16
	5	Tsukuba	51	21	0	34	2	9-15, 17	9,10,11,1 2,13,14,1 5,17	12,13,14	10,11	12
	6	Western Maritime Continent	23	9	0	34	15	9,11,12,1 6,17	10,11,15, 16	12,13,14	10,11	10
	7	Lindenberg	6	3	0	29	6	11,12	12,13	12,13	10,11	9,17
	8	Cabauw	32	0	0	31	16	11,12	12,13	12,13,14	10,11	9,17
	9	ARM/Southern Great Plains	0	11	10	6	0	12,13	11,12	12,14	-	16
1.1	10	ARM/Northern Slope of Alaska	12	17	0	44	39	11,14	10,14	13,14	10,11	9,17
		- Jan	and							-		

ALOS dataset for River Basin

River Basin:

- 17 rivers in 17 countries are chosen from all over the world.
- JAXA will produce dataset of Huong river in Vietnam in this year.


AVNIR-2 Obs.Date: Oct. 07, 2006

- The dataset consists of path mosaiced geo-coded data are generated from standard products.
- Each scene is fully or partially covers RS area.
- Scenes of optical sensors that have less than 10% cloud cover are counted.

Sensors	PRISM	AVNIR-2	PALSAR					
Observation mode	OB2(Nadir35km) or OB1(Nadir70km)	Obs	FBD	PLR	WB1(SCAN)			
Pointing Angle/ Off nadir Angle (°)	±1.2(OB2)or 0(OB1)	0	34.3	12.5	27.1			
Product Level	1B2G(UTM)	1B2G(UTM)	1.5G(UTM)	1.5G(UTM)	1.5G(UTM)			
Parameter	Radiance	Radiance	Amplitude	Amplitude	Amplitude			
Spatial Resolution (m)	2.5	10	12.5	12.5	100			
Swath (km)	35(OB2) or 70(OB1)	70	70	35	350			
Processing	Path Mosaic							

Mongolia/Mandalgobi

FBD34.3 Obs.Date: May 01, 2007 (R:G:B)=(HH:HV:HV) Tibet/Naqu

PLR21.5 Obs.Date: May 18, 2007 (R:G:B)=(HH:HV:VV)

Summary

- JAXA has been developing satellites for water cycle observation to contribute to GEOSS.
- Increase of satellite data use for societal benefits is a major goal of JAXA. It has been developing applications of satellite data for water resource management in cooperation with other organizations and researchers.
- AWCI is a key regional task of GEOSS and provides a significant opportunity for demonstration of satellite data applications for IWRM in this region.