Introduction of ongoing studies at ICHARM

- Some implications to the GEOSS-AWCI Next Stage -

Kazuhiko FUKAMI

International Centre for Water Hazard and Risk Management under the auspices of UNESCO (UNESCO-ICHARM), Public Works Research Institute (PWRI), Japan

Integrated Flood Analysis System (IFAS)

Flood runoff analysis system with satellite-based rainfall & global GIS information

Runoff Analysis Model on IFAS (PDHM Ver.2)

Flood runoff simulation model creation using global GIS data

	-	
Туре	Product	Provider
Elevation	Global Map(Elevation data)	ISCGM
	GTOPO30	USGS
	Hydro1k	USGS
Land use	GLCC	USGS
	Global Map(Land cover)	ISCGM
	Global Map(Land use)	ISCGM
Geology	Geology	CGWM
Soil type	Soil Texture	UNEP
	Soil Water Holding Capacity	UNEP
	Soil Depth	GES

Example of elevation data of a each cell and a river channel network

Modify elevation until all sells are decided their flow directions

Creation of River channel network and basin shape based on elevation data

Basin boundary and pseudo river-channel generation

(The topography of red cells is automatically corrected for flow direction generation.)

Interface display

Main display

Edit display of rainfall data

Setting display of parameter

<figure>

New IFAS-extra-module for Automatic Warning System (IFAS Ver.1.3)

(automatic incremental simulation for each time step and alert window & e-mail)

The calculation period is 5 days 1 hr before 18 days 0 hr of days 1 days 1 hr before 18 days 0 hr of days 1 hr before Tank State is preserved.	Rain Import Option	Correction Method None Type1 Default Type1 Formulat y =(13) * In(x) + (11)	
iraph Rain Option	C GPV	Type1 Formula2 y = (23) * x * exp (21)	
Iert Area Setting iell No; 1051 rea: A2 ilert Threshold: ev:1 100 ev:2 200 ev:3 240 insert Update Delete MoveU orrection Time 2011/02/07 12:00 orrection Time	3 Factor 0.2 0.2 0.2 0.2 Jp MoveD	© Qmorph © 3B42RT(V6) © Ground-based	Formaula Option When x <= 0.1
Iert Output Method Setting	E-mail (Delivery	
■ PC Screen Display Lev.1 Message: Lev1.警報です		age: Lev1.警報のため、送信し	Jati
Lev.2 Message: Lev2.警報です		age: Lev2.警報のため、送信し	Lata
Lev.3 Message: Lev3.警報です		age: Lev3.警報のため、送信し - ···	Lます
	Addressee C	Setting: heck Name	MailAddress
Beep Sound of PC Voice Continuous Time: 5 Second		🔽 nifty1	rse22671@nifty.com

IFAS Training workshops (2008 – 2011)

Purpose of the training course

To build capacities to undertake hydrological analyses/forecasting in relatively ungauged basins through coupled usage of global / insitu data.

IF Xet

ICHARM

Program

Remote Sensing of Precipitation from Space (JAXA)
Introduction of river administration in Japan
Introduction of Global Flood Alert System
Operating procedures for IFAS
Validation method of satellite-based rainfall
Current conditions and problems in each country

 International Workshop on Application and Validation of GFAS
 2008: Ethiopia, Zambia, Cuba, Argentina, Bangladesh, Guatemala, Nepal (7countries)

2009: India, Indonesia, Viet Nam, Bangladesh, Nepal, Laos (6countries)

- IFAS Seminars in overseas (sponsored by ADB, JAXA, UNESCAP, etc.) Nepal (2009), Indonesia, Myanmar, Vietnam (2010), Pakistan, Thailand, and India (2011)
- ICHARM PhD & Master Courses, JICA short courses, etc.

Comparison between satellite-based inundation extent and inundation simulations with another ICHARM's Rainfall-Runoff-Inundation (RRI) Model for Pakistan flood, August 2010

Runoff-inundation simulation can **interpolate** <u>missing</u> satellite-based information on flood inundation area caused by flash flood.

Rainfall-Runoff-Inundation model simulation for Thai Flood, 2011

- At Nov. 1, flooding still remains high around the Nakhon Sawan and Ayutthaya
- At Nov. 15, flooding around the Nakhon Sawan is reduced
- At Nov. 30, the flooding remains only partially at the northern part of Bangkok

UNESCO Project (2 years: 2012-14) Strategic Strengthening of Flood Warning and Management Capacity of Pakistan

A. Strategic Augmenting of Flood Forecasting and Hazard Mapping Capacity

A-1 Development of Indus IFAS

A2- Floodplain and Hazard Mapping of Lower Indus

B. Knowledge Platforms for Sharing Transboundary Data and Community Flood Risk Information

B1. International Networking forSharing of Transboundary DataB2. Knowledge platform for timelynational, provincial and district leveldata sharing

<u>C. Capacity Development for Flood</u> Forecasting and Hazard Mapping

 Master's Degree training at ICHARM for PMD, SUPARCO and FFC on flood forecasting/warning, hazard mapping and integrated flood management

- A short training course at ICHARM on IWRM and integrated flood management
- Training workshops in Pakistan conducted by UNESCO Islamabad

Example of Implementation Project for flood early warning system with satellite-based information

ADB-RETA 7276 in Indonesia to implement IFAS-based flood forecasting and warning system for the Bengawan Solo River (FY2009-2012)

Flood in Dec.2007

Training Workshop with BBWS Solo in March, 2010 JST-JICA SATREPS Project on Research and Development for Reducing Geo-Hazard Damage in Malaysia caused by Landslide & Flood

(FY2011-2015)

Major target river basin for flood: Kelantan

Wide-range analysis: IFAS High-res. analysis: GETFLOWS

River

Assessment of the impact of climate change on flood disaster risk and its reduction measures over the globe and specific vulnerable areas

Bias in MRI-AGCMs' projections of rainfall under present climate (1980-2004)

Bias (sim.- obs.) in mean annual rainfall

Mean annual maximum daily rainfall Sim./Obs.(1980-20

Red : Overestimated Blue : Under-estimated

Concept of bias correction method for MRI-AGCM(continue) *Hybrid Quantile Method* (Inomata et al., 2011) (Inomata et al., 2011) GCM20 Present and Future are divided into each month. (Inomata et al., 2011) (Inomata e

(4) The ratio between observation ($P_Obs_{m_i}$) and GCM20 Present ($GCM20_Pre_{m_i}$) is estimated for each month and each rank (α_{m_i}). α_{m_i} is regarded as correction coefficient and multiplied to GCM20 Future of same month and same rank ($GCM20_Fut_{m_i}$) and corrected value ($P_Fut_{m_i}$) is obtained.

$$\alpha_{m_{i}} = \frac{P_Obs_{m_{i}}}{GCM20_Pre_{m_{i}}}$$
$$P_Fut_{m_{i}} = \alpha_{m_{i}} \times GCM20_Fut_{m_{i}}$$

Effect of the bias correction method for river discharge simulation for the Ikeda station of the Yoshino River, Shikoku, Japan

Change of rainfall from Present to End-of-21c predicted by MRI-AGCMs (bias-corrected)

Ensemble average of change of rainfall from Present (1980-2004) to End-of-21c (2075-2099) with 6 different MRI-AGCM simulations

Ensemble average of change of standard deviation of annual rainfall (year-to-year variation of annual rainfall) from Present (1980-2004) to End-of-21c (2075-2099) with 6 different MRI-AGCM simulations

→ Yearly variation of annual rainfall will increase in the future and, consequently, annual rainfall will be more unstable.

Projected change ratio of top-0.5% (extreme flood) daily river discharge

Global runoff model (BTOP model with 20km-grid) + MRI-AGCM3.2S with the bias correction Present: 1980-2004, Near Future: 2015-2039, End of 21st Century: 2075-2099

Default model parameters were used here except a few rivers such as the Mekong. ICHARM-NDRI Workshop on Assessment of Flood and Inundations under the Effect of Climate Change in Lower West Rapti River Basin in Nepal

Flood measurement with ADCP aboard tethered boat with RTK-GPS

ADCP on High speed river boat with RTK-GPS

Commands of ADCP

Bottom truck	BM5: 5		
Pings for Bottom	BM3: 3		
Pings for Water	WP3: 3		
Type of band	WB0: Broad band		
Distance for first blank	WS25: 25 cm		
Mode of measurement	WM12: high speed mode		
Number of layer	WN40: 40		
Thickness of layer	WS25: 25 cm		

Non-contact current meter system to enable automatic safe measurement of severe flood flow in Asian monsoon region

Capacity Development Programs

• Short training courses

- Flood hazard mapping (FHM) course (2004-2008, JICA)
- Local emergency operation plan with FHM (2009-, JICA)
- River and Dam engineering course (1973-, JICA)
- Comprehensive Tsunami training (2008, UNISDR)
- Aftercare program for implementation at trainees local communities (2006-, JICA)
 - KL, 2007; Guangzhou, 2008; Manila, 2009; Hanoi, 2010
- Master Course on Water-related Disaster Management with National Graduate Institute for Policy Studies (GRIPS) supported by JICA since October 2007
 - 10 students from Bangl., China, India, Nepal, Japan (2008)
 - 8 students from Bangladesh, China, Indns, Nepal, Ethiopia, Thai. (2009)
 - 12 students (2010), 15(+4) students (2011)
- PhD Course with GRIPS 1 student (2010), 3 students (2011 & 2012)

