

The 9th AWCI ICG Meeting and the 2nd CCAA Study Workshop

Korea Report on CC Adaptation and Water Nexus

September 29, 2012

Deg-Hyo Bae, Professor

Dept. of Civil & Environmental Engineering, Sejong Univ., Seoul, Korea

Recent abnormal heavy rainfalls

2010 & 2011 years rainfalls in Seoul

Amount of Rainfall for Flood Season

Rainy days & total rainfall(July-Sept.)

Year	Rainy days (Rate, %)	Rainfall amount (mm)
2001	33 days (-)	981.1 mm
2010	56 day (69.70)	1394.6 mm
2011	47 day(42.42)	1640.1 mm

Max & Min Rainfall in Seoul

Year	3-hr max rainfall region	3-hr min rainfall region
2001	213.0 mm	155.0 mm
2010	198.5 mm	78.0 mm
2011	202.0 mm	100.0 mm

- Increase of rainy day
- 3 Increase of 3-hr rainfall

- 2 Increase of rainfall amount
- 4 Higher spatial difference in rainfall

> Flooding areas (2010, 2011 years)

Climate Change Impact Assessment in Urban Drainage System

- High-Resolution Climate Chage (CC) Projection
- > Simulation of precipitation for future design rainfall analysis
 - ✓ Spatial resolution: 5km×5km, Temporal resolution: hourly

> Evaluation of future precipitation changes

- Periods: S0(1971~2000), S1(2011~2040), S2(2041~2070), S3(2071~2100)
- Increase the spatial variability of precipitation
- The extreme rainfall event(over 80mm) is expected to be increase

< Number of Rainy Days >

_ Estimation of future probability rainfall

- Estimate the probability rainfall using Change Factor Method
- Increase the future probability rainfall

 \checkmark S1(30%↑), S2(38%↑), S3(80%↑) for 3hr duration

Climate Projection (ECHO-G/S)

Downscaling Method (RegCM3, Sub-bats)

Bias Correction

Frequency Analysis

Estimation of Design Rainfall

< Estimation Procedure of Future Probability Rainfall>

Return	Duration (180min)			
Period	2011-2040	2041-2070	2071-2100	
30-year	1.31	1.38	1.77	
50-year	1.31	1.38	1.79	
100-year	1.32	1.39	1.82	

< Increase of Probability Rainfall for the Future Preiods>

> Future design rainfall analysis

X Currunt Design criteria of flood control facility (Seoul)

Facility	Classificatio n	Design Criteria (frequency)	
C4maama	Main	100year	
Stream	Tributary	50year	
Corror	Main	30year	
Sewer	Branch	10year	
Pump -		30year	
••••	-	-	

- ✓ In 60min design rainfall, 30-year rainfall of S0 is similar to 10-year rainfall of S1 period.
- ✓ In 240, 360min design rainfall, 100-year rainfall of S0 is similar to 50-year rainfall of S1 period.
- ✓ Need to increase the urban design rainfall

Return Period		Duration								
		1	2	3	4	6	12	15	24	48
	10yr	76.5	113.3	142.5	157.5	182.6	223	238.6	282.7	334
	30yr	93.5	139	176.7	195.6	225.4	273.9	294.7	354.5	419.5
S0	50yr	101.2	150.8	192.3	212.9	245	297.2	320.3	387.3	458.5
	100yr	111.7	166.6	213.3	236.3	271.3	328.6	354.8	431.5	511.1
	200yr	122.1	182.3	234.3	259.7	297.6	359.8	389.3	475.5	563.5
	10yr	87.1	125.8	161.4	161.3	195.7	232.9	251.3	307.2	367.9
C1	30yr	109.4	157.3	204.0	201.6	242.8	285.8	310.2	386.1	468.1
S1 (2020-120-12)	50yr	119.7	172.0	223.5	219.8	264.5	309.9	337.0	422.0	513.7
(2020year)	100yr	133.6	191.5	249.7	244.6	293.5	342.7	373.2	470.6	575.4
	200yr	147.4	210.7	275.8	269.4	322.5	375.1	409.3	518.7	636.8
	10yr	94.1	134.5	172.9	193.8	207.2	237.2	257.5	335.3	437.9
G2	30yr	119.4	168.9	219.8	248.4	259.7	291.5	319.2	428.0	567.9
S2 (2020-120-12)	50yr	131.0	184.9	241.3	273.1	283.8	316.2	347.4	470.5	627.2
(2030year)	100yr	146.7	206.2	269.9	306.5	316.1	349.8	385.2	527.5	707.3
	200yr	162.3	227.3	298.7	340.1	348.3	383.1	423.1	584.2	787.0

Estimation & evaluation of flood level in stream

- > Evaluate the design flood level considering CC impact in main stream of Seoul
- Overflow areas are increased under current design frequency in almost all streams

Evaluation of drainage capacity

> Drainage capacity is evaluated before & after the investment plan of facilities

- ✓ Sept.21, 2010 heavy rainfall
- **✓** Target year : S2(2030yr)
- Main facilities
 - **✓** Sewer, Storage, Pump
- Analysis model : SWMM

Current Condition After Investment 2010yr: 1hr maximum rainfall 71mm/hr

Target year: 1hr maximum rainfall 94mm/hr

Suggestions for Climate Change Adaptation

✓ Development of R&D techniques for flood prevention in Seoul

Target Rainfall & Design frequency R&D

- ✓ Establishment of target rainfall
- ✓ Increase of design frequency for urban stream

Climate Change
Adaptation

Consistent increase of investment for drainage facilities

investiment of facilities

Real -time flood forcasting & warining system

✓ Research center of urban weather service for next generation

Construction &

✓ Development of urban flash flood guidance system

Suggestion 1: Establishment of Target Rainfall

Establishment of target rainfall for the climate change adaptation

Application of target rainfall for Urban disaster prevention

- Determination of target rainfall that is able to do integrated disaster prevention performance of facilities
- Transformation of probability frequency criteria to disaster performance criteria
- The comporehesive flood prevetion plan
- middle & upstream area : sewer, storage, infiltration facilities
- Downstream area: observance of pump station & detention pond design criteria

Suggestion 2: Increase of Design Rainfall Frequency

Increase of design frequency for urban stream

- Need to ensure the safety against inundation risk to adapt climate change
- Design frequency of Seoul stream : 50yr, 100yr, 200yr
- Need to enhance design rainfall frequency in urban streams

<Proposal of Design frequency of urban stream in Seoul>

Basin	Current frequency (year)	New frequency (year)
Jungrang	100	200
Hongje	50	100
Banpo	50	100
Ui	50	100
Cheonggye	80	100
Dorim	50	100
••••	-	-

< Current and Suggested Design Frequencies>

Suggestion 3: Consistent Increase of Investment for Drainage Facilities

Underground facilities for flood management

- Lack of space for constructing facilities of flood management on the ground in Seoul
- Expation & upgradation of current facilities is not feasible to overcome flood risk in the future
- Need to construct underground facilities for water management efficiently and stable

	U.S.A		
	()		
1	K		

	Contry	Purpose	Capacity & Standard	
	Japen	Improvement of water qualityEliminaion of flood risk	• (main line) D8.5mX2.2km • (branch line) D3.0mX4.7km	
	Singapore	Water reuseImprovement of drainage system	■ D3.3~6.0mX45.7km	
	U.S.A (TARP)	Improvement of water qualityEliminaion of flood risk	■ D3.0~11.0mX176km ■ Storage 3,783,000m³	
	Spain	Improvement of water qualityEliminaion of flood risk	 10 retaining facilities Storage 2,634,000 ton 	
	Malaysia	Eliminaion of flood risk	■ D11.8mX9.7km ■ Storage 1,000,000m³	

Plan to invest and construct

- Selection of flood pron area
- Structural analysis for constructing of underground facilities
- Feasibility study

<Ex: Planning Large scale drain tunnel(item)>

Suggestion 4: Urban Weather Sevices for Next Generation

National Institute of Meteorological Research

Development of weather prediction technique for urban area

- Service: +1hr~3hr forecast data every 20min
- Spatial resolution: 1km~200m

Development of state-of-the-art flood prevention system of urban area

Suggestion 5: Development of Urban Flash Flood Forecasting System

Technique of urban flash flood guidance

- Urban flash flood is increaing by severe rain storm
- •Flood forecast based on rainfall-runoff model is limited to forcast the flash flood occurence in advance
- Development of prediction method that is able to forcast flood using simple input data is required

Suggestion 6 : Development of R&D Techniques

Development of R&D techniques for flood prevention in Seoul

Drawing up of Urban drainage control manual preparing for Climate change

