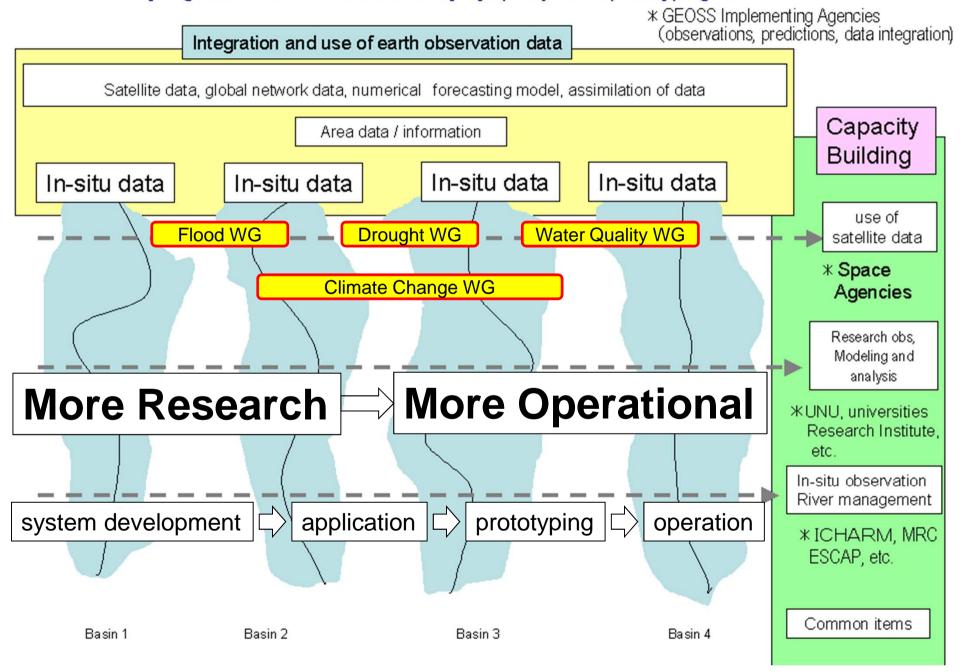


2000 – Integrated Global Observi (IGOS) Water Theme Propo	7 Year History o	f GEOSS/AWCI			
2001 – Water Theme Approved					
2002 -Team Report Writing Team	(WSSD)				
2003 – Preparation for "Integrated Global Water Cycle Observation (IGWCO)"					
2004 – IGWCO Team Report	Preparation for 10-year Implem	entation Plan			
2005 − 1 st IGWCO in Tokyo →	GEO/GEOSS Asian Water Cvo	ele Initiative (AWCI)			
2006 – 2 nd IGWCO in Paris	Asian Water Cyc	1 st Sump. in Tokyo			
2007 – 3 rd IGWCO in DC	1st GEOSS AP in Tokyo	2 nd Simp. in Tokyo			
2008 – 4 th IGWCO in Geneva	2 nd GEOSS AP in Tokyo	1 st ICG in Bali 3 rd Simp. in Beppu 2 nd ICG in Tokyo			
2009 – 5 th IGWCO in Kyoto	3 rd GEOSS AP in Kyoto	3 rd ICG in Beijing 4 th ICG in Kyoto			
2010 – 6 th IGWCO in New York	4th GEOSS AP in Bali	5 th ICG in Tokyo 6 th ICG in Bali			
2011 – 7 th IGWCO in Tokyo		7 th ICG in Tokvo			
2012 – 8 th IGWCO in Hawaii	5 th GEOSS AP in Tokyo	1 st CCAA/T in Tokyo 8 th ICG in Seoul			
	O OLOGO A III TORYO	9 th ICG & 2 nd CCAA in Tokyo			

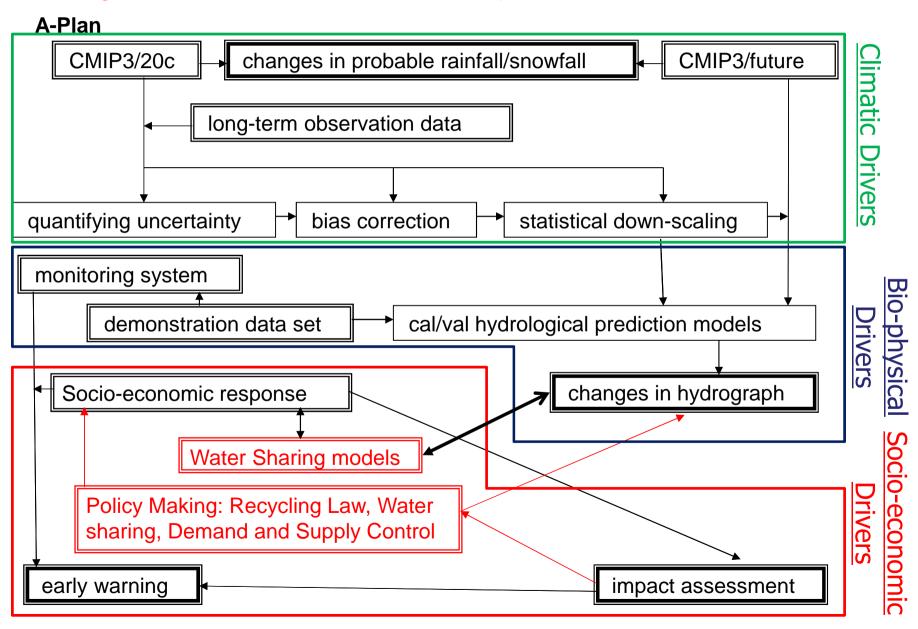
1st Asian Water Cycle Symposium, Tokyo, Nov. 2005 1st Task Team Meeting, Bangkok, Sep. 2006 st Capacity Building Workshop, Sep. 2006 2nd Asian Water Cycle Symposium, Tokyo, Jan. 2007 1st GEOSS AP Symposium, Tokyo, Jan. 2007

GEOSS Asian Water Cycle Initiative (AWCI)


To promote integrated water resources management by making usable information from GEOSS, for addressing the common water-related problems in Asia.

Uniqueness

- A River Basin of Each Countries
- Observation Convergence
- Interoperability Arrangement
- Data Integration
- Open Data & Source Policies
- Capacity Building
- Early Achievements


GEOSS/Asian Water Cycle Initiative

[integration of earth observation data] + [capacity development] programme

Implementation Planning

Question 1: What should be added, removed and modified?

and to End Approach on Climate Change Adaptation **Demonstration Projects** Scientific approach **Engineering Approach** Socio-economical approach Adaptation Current Disaster potential **Ouantifying** Water quantity Climate options facility, plan and quality uncertainty Early models management prediction warning Human Inform Environ Impact assessment Decision making flood **Behavior** Multi-model ment Innovative ation technology ensemble (MME) allocation Flood **Process** ordinary - Flood Filed Human control Study control survey life - quality ground control 1 & cost Down-scaling Economic water Industry Behavior Allocation Integrated drought policy Basin-scale Observed Treatm **Monitoring** prediction of Flood Data Sets Land use evaluation quantity & quality Disaster potential **Drought WG** Drought Water Quality Water Quality WG Snow, Glacier and GLOF Regional Coordination Collaboration Typhoon, Cyclone and induced Flood Flood WG Harmonization Climate Change WG Capacity Building Programs

The types of activities requiring the gap filling and capacity building

- ✓ Analysis of the current variability of extreme hydrometeorological phenomena (probability of occurrence, duration of hazardous period by the territory) and their after-effects for vulnerability assessment.
- **√**Future risk assessment in line with the Climate Scenarios and application of the advanced methods and tools.
- ✓ Development of the large-scale maps of the current and future risk for individual phenomena in line with the needs of the sectors (construction, transportation, recreation area, etc.) for identification the high risk areas.
- ✓ Assessment of potential of the hazardous phenomena risk reduction via improvement of forecasting and warning.

GEOSS Asian Water Cycle Initiative

CUMILTY ACHYLLIC

Lao PDR's Implementation Plan input to Implementation proposal AWCI 2

1. Steps and Strategy following the three approaches:

Framework development approach:

- National Disaster Management Committee (NDMC) is the high level decision making body which composing of ministerial members and chaired by Vice-Prime Minister.
- Existing developed framework and legislation tools are:

National Water Resources Policy and Strategy

National Strategy on Disaster Management

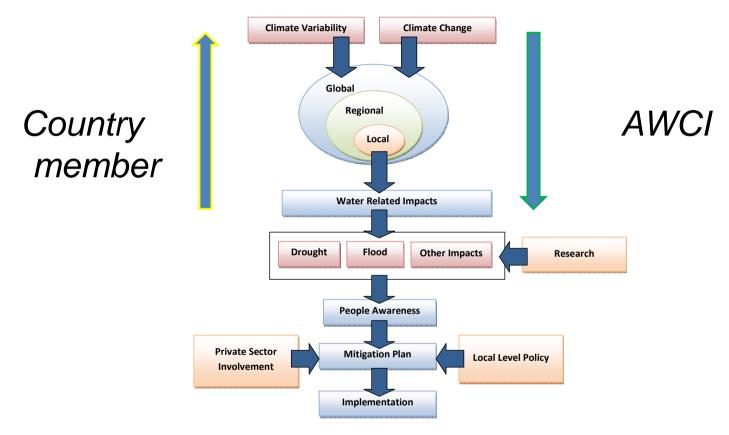
National Climate Change Adaptation Plan of Action (NAPA)

It is proposed to Develop:

- (1). National Policy or Decree on Meteorology and Hydrology (Hydro-Meteorological Services Act)
- (2). Strategy and SOP on National Early Warning Systems
- (3). Guidelines and Procedures on Applications of AWCI over Demonstration Basin and Replication to Nationwide.

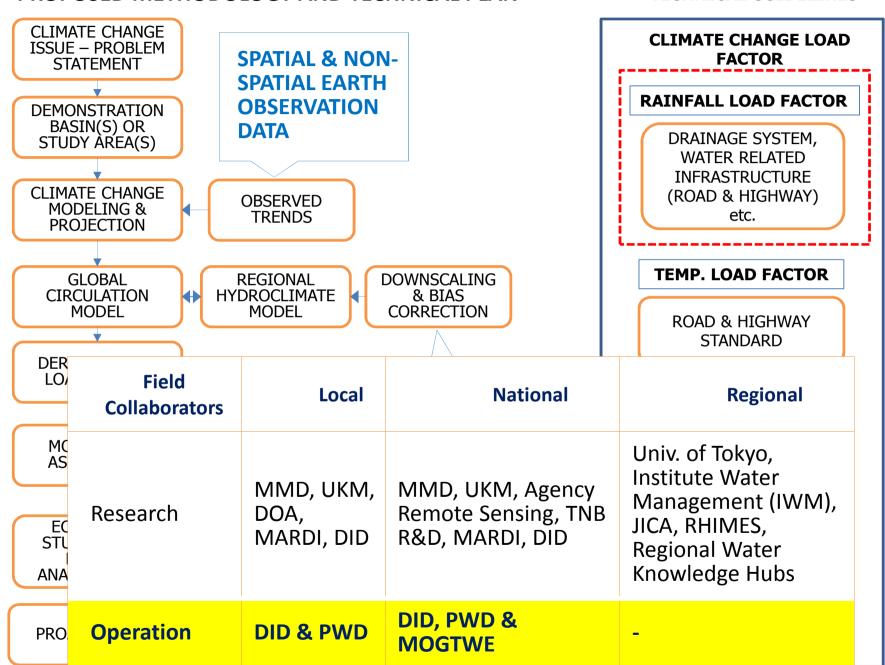
ISSUES RELATED TO WATER NEXUS

Water-Agriculture Nexus:


- Huge demand of food for huge population
- Scarcity of surface water
- Over exploitation of groundwater for irrigation and drinking
- Arsenic contamination of groundwater and Arsenic in the food chain pose health risk
- Damage to agricultural land in the coastal region due to salinity intrusion

Water-Biodiversity, Ecosystem Nexus:

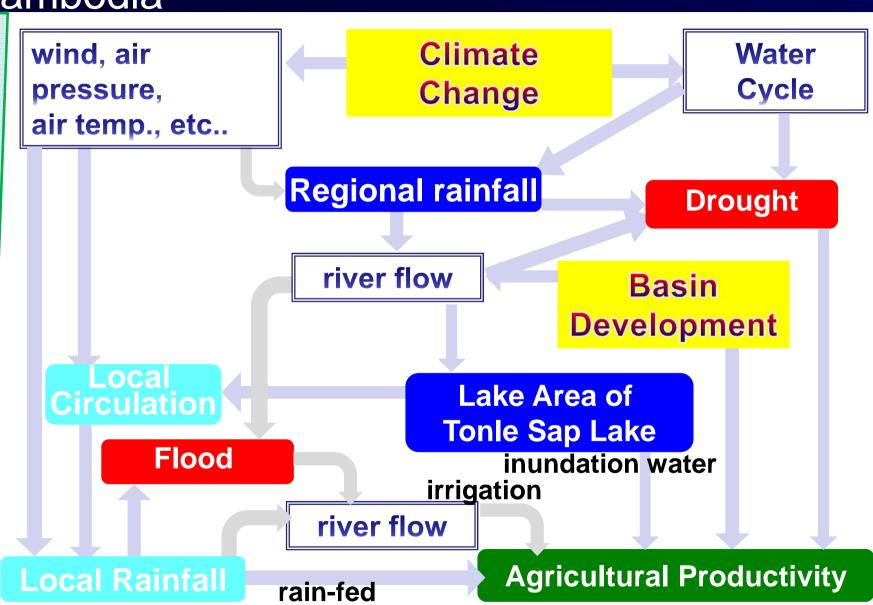
- Reduced dry season flows
- Upstream diversion of river water across the borders
- Damage to ecosystem in the rivers and biodiversity of Sundarbans
- Increased concentration of inland surface water


Frame work Approach

Framework development based on simple approach

PROPOSED METHODOLOGY AND TECHNICAL PLAN

TECHNICAL GUIDELINES


Examples

Global

Indochina

Cambodia

oca

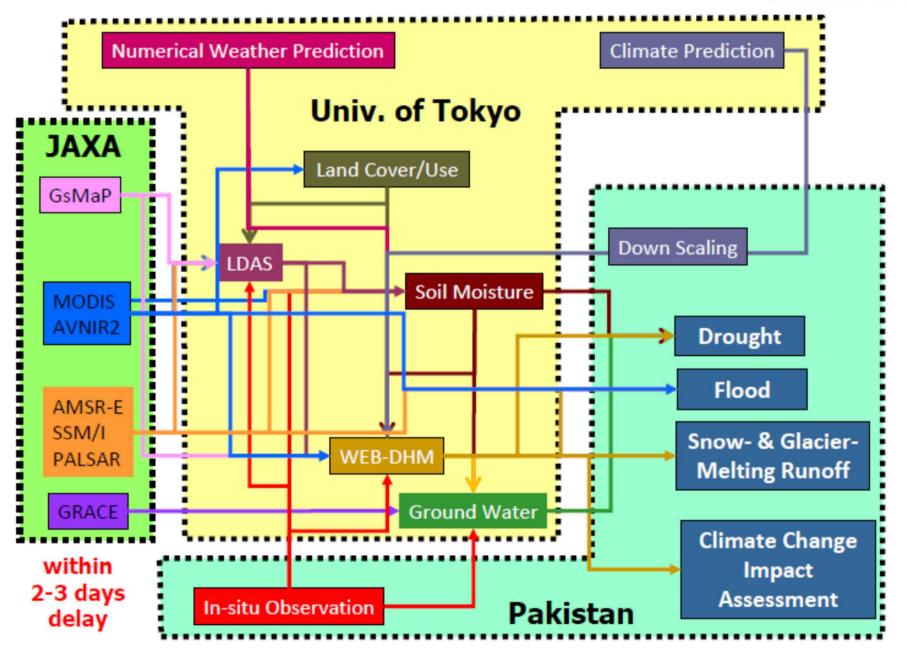
What you can do in "Cambodian group"?

Technology: Model development

- Hydrological Modeling
 - +crop model +irrigation
- **Data Assimilation** Vegetation, Cloud
- Rainfall forecasting

Technology: Satellite

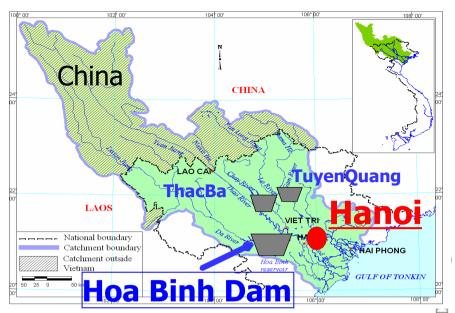
- soil moisture: PALSAR+ WFH-DHM
- DA of soil-moisture
- soil moisture: AMSR-E + LDAS-UT
- rainfall: TRMM + in-situ


- role of Tonle Sap Lake for the local circulation
- later withdrawal of IP monsoon
- effect of the climate change (local & large-scale)

Model application + Science: mechanism study

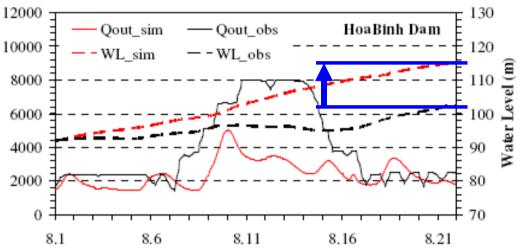
- optimization of crop calendar
- impact of climate change
- impact of land-use change
- impact of basin development incl. dam construction

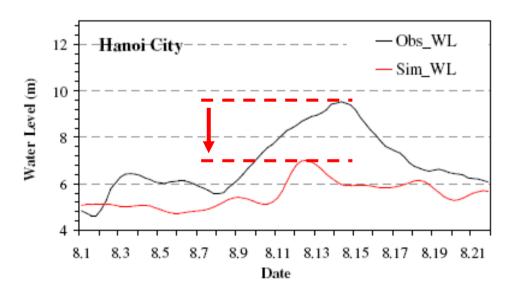
Model application + **Assessment**



Toward the Final Stage as the SAFE Prototype

Target	Method	Development	Data Set	Application	
Drought	Distributed Model	completed	completed	on-going	
	Data Assimilation	completed	completed	on-going	
	Index	completed	on-going	-	
	Monitoring System	on-going	-	-	
Flood	Algorithm	completed	completed	completed	
	Distributed Model	completed	completed	on-going	
Snow- & Glacier- Melting	Distributed Model	completed	completed	completed	
	Mass Balance Model	completed	completed	completed	
Climate	Model-selection	completed	completed	completed	
Change Assess- ment	Bias Correction/Down-scaling	completed	on-going	on-going	
	Hydrological Prediction	on-going	on-going	-	
	Assessment	completed	on-going	on-going	


Flood disaster in Hanoi

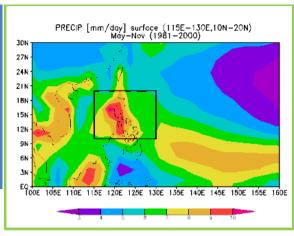

- Tropical cyclones
- Historical flood events with damages
- Death toll: around 100psn/year Economic loss: \$1.2 billion (2006)

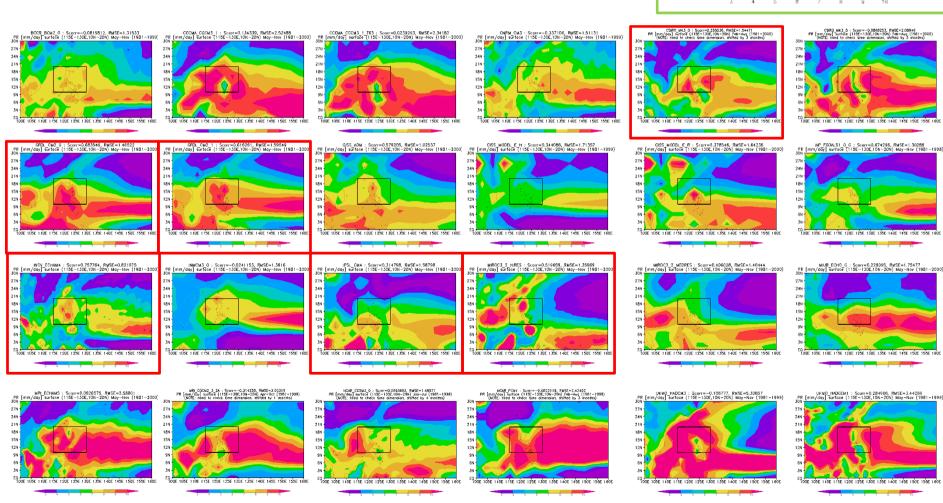
Increasing demand for hydropower generation

- Increasing by 15%in each year (due to economic growth & urbanization)
- Hydropower: 60% of total electricity
- Unstable water supply (70% of annual rainfall accumulates in Jul-Sep)

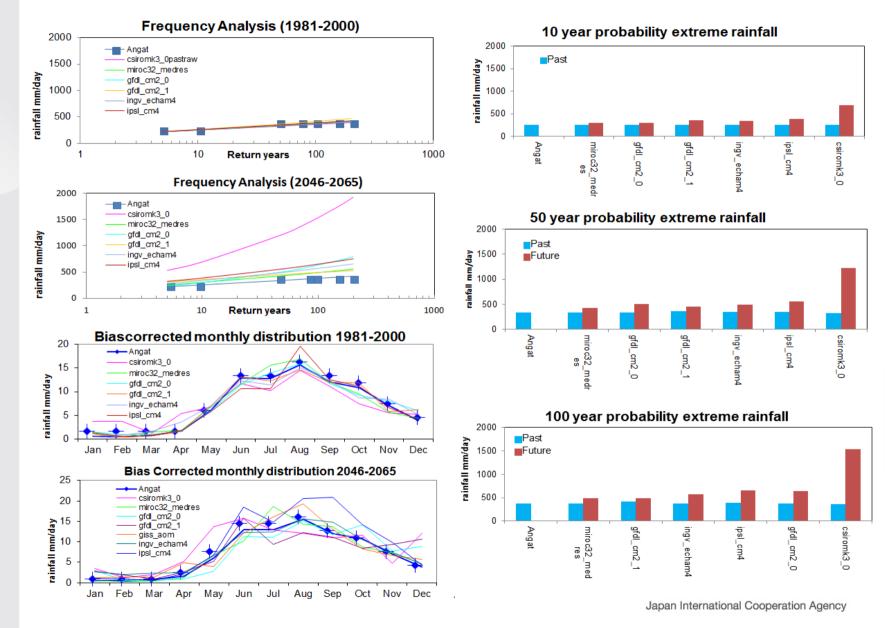
The Red River Basin: 160,000 km²

THE STUDY OF WATER SECURITY MASTER PLAN FOR METRO MANILA AND ITS ADJOINING AREAS

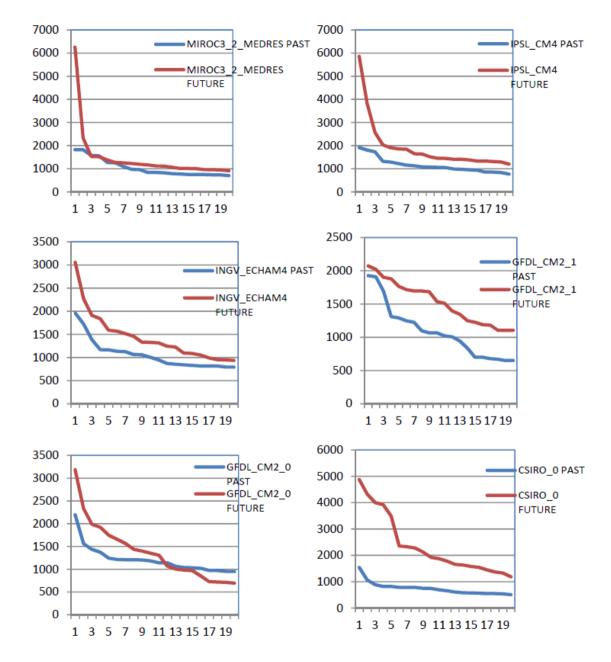

FINAL REPORT (DRAFT) CLIMATE CHANGE IMPACT ASSESSMENT AND HYDOROLOGICAL SIMULATION


AUGUST 2012

JAPAN INTERNATIONAL COOPERATION AGENCY
THE UNIVERSITY OF TOKYO
NIPPON KOEI CO., LTD.


Japan International Cooperation Agency

MODEL SELECTION: Precipitation (May-November)



Changes of Flood in Angat Dam Basin Japan International Cooperation Agency

Changes of Drought in Angat Dam Basin

GCM	Drought		# of days/year		Upper Limit of		# of days/year		Longest # of	
Model	Discharge		that		Drought		that baseflow <		days for each	
	(m^3/s)		baseflow < past		Discharge(m³/s)		past drought		year below	
	(average 355 th		drought		(10 th percentile of		discharge		average	
	rank)		discharge		355 th rank)		(10 th percentile of		drought	
			(average of 355 th				355 th rank)		discharge	
			rank)							
	Past	Future	Past	Future	Past	Future	Past	future	Past	Future
MIROC	0.144	0.151	27	34	0.123	0.107	2	13	100	135
IPSL	1.85	6.46	22	0	1.6	5.939	2	0	59	0
INGV	0.17	0.194	30	11	0.138	0.156	3	0	104	76
GFDL_1	0.156	0.173	39	28	0.123	0.131	1	0	134	88
GFDL_0	0.174	0.175	44	64	0.122	0.116	3	13	167	255
CSIRO	0.15	0.154	37	34	0.13	0.11	5	15	193	191

red = drier in future; more frequent below drought dischargeblue = wetter in future; less frequently below drought discharge

Changes of Drought at San Isidro gauge, Pampanga River Basin

GCM	Drought Discharge (m³/s) (average 355th rank)		# of days/year that baseflow < past drought discharge (average of 355th rank		Upper Limit of Drought Discharge(m³/s) (10 th percentile of 355 th rank)		# of days/year that baseflow < past drought discharge (10th percentile of 355th rank)		Longest # of days for each year below average drought discharge	
	Past	Future	Past	Future	Past	Future	Past	future	Past	Future
MIROC	3.84	2.529	22	34	0.899	0.58	3	9	93	106
IPSL	11.78	12.547	19	19	3.791	4.209	2	1	54	87
INGV	5.05	3.96	18	22	1.528	1.451	3	5	54	57
GFDL_1	4.78	2.93	30	43	0.749	0.665	2	2.95	96	111
GFDL_0	3.64	2.43	29	34	0.746	0.695	5	6	100	124
CSIRO	12.66	9.948	21	35	2.763	1.905	2	7	57	79

red = drier in future; more frequent below drought discharge
blue = wetter in future; less frequently below drought discharge