Climate Change and Mitigation Measure in Republic of Korea focused on reservoir operation with high turbid water

Dr. Sangyoung Park

•Executive Director of Korea Water Forum/ Principal Researcher of K-water Institute •E-mail: sypark119@kwater.or.kr

Climate Change of Republic of Korea

Global climate change

- Global warming trend
 about 0.6°C increased for century
- Average temperature of Korean peninsular has risen up to 1.5 degree during the last century (1906-2005)
- Frequency of heavy rainfall increased to 18%
- Days of rainfall decreased to 14%

The Best Water Partner

Prospect of Climate Change

Response of Global Community

Economical losses
 -5~20% of Global GDP (Stern review, '06)

Mitigation & C.C Adaptation Program

-World Bank 1 trillion\$, EU 6,400\$ investment plan

-Development of National level mitigation plan of climate change: USA, Japan, U. K., Canada

Background

K-water supplies over 16 million m³/d of bulk water

- 16 Multipurpose Dams: 4.4B m³/yr
- 27 Water Supply Systems: 2.8B m³/yr
- Providing 55% of national clean water needs
- Water quality control is important for drinking water supply
- Recently, many reservoirs have been suffering from turbid water

Turbid Water and Problems

Turbid water is dirty water with suspended solids and other harmful materials

• Organic materials, P and N are attached to suspended solids

High turbidity affects drinking water source quality

Increasing drinking water treatment costs

Drinking water standard is < 0.5 NTU
 NTU: Nephelometry Turbidity Unit

Turbid Water Behavior in Reservoir

Turbid Water Behavior in Reservoir

Turbid Water in River

The Best Water Partner

Turbid Water in Reservoir

Imha and Soyang Case

Major Turbid Water Source of Imha Catchment

Turbid Water Problem in Imha

Difficult to operate water treatment plants normally

Negative Impact on Downstream

Difficult to operate reservoir normally

Turbid Water in Soyang Watershed

Severe storm in Inje area in '06.7
7.11~20, total 600mm, Hourly Max. 88mm/hr

Landslide(125), River bank breaks(121), Massive soil loss

in upstream watershed

Declared as "Special Disaster Area('06.7.18)" Government spent 675 bn. won

The Best Water Partner

Response

Imha-dam

- ↓ Fishery loss compensation('04~'07.7) : 3.2 bn. won
- **4** Move water purification plant : 14.4 bn. won
- ↓ Total budget of government ('05 '15) : 23.31 bn. won

Response

Yongdam-dam

- Cleaning riverbed (about 19km): 0.16 bn. won
- Selective withdrawal facility: 50 bn. won

Current Counter Measures for Turbid Water Problems

Catchment

source control (short term effect)

- soil loss control

- tributary and farm land refurbishment
- improve cultivation method
- debris barrier

Reservoir

- dam facility improvement
- tunnel type spill way
- selective withdrawal facility
- automatic monitoring system

Downstream River

• reduce the impact of downstream

- construction of wetland
- monitoring ecological condition

• short term counter measure

- low performance or outcome
- lack of integrated approach

The Best Water Partner

Governance

Comprehensive Plan for Turbid Water

Major outputs of master plan

- 🖊 Climate change analysis
- 🖊 Turbid water mechanism
- 🖊 Cause analysis
- 🖊 Soil loss analysis
- 🖊 Turbid water potential analysis
- Risk Map and DB management
- Technical guide line for turbid water management

Turbid Water Mechanism Analysis

The Best Water Partner

Cause analysis-rainfall pattern change

Cause analysis- soil characteristic

Soil analysis for potential risk of high turbidity

- + categorization and coding of soil characteristic
- **4** weighting of soil code
- 4 estimate the threshold value: above 11= high risk area
- 4 Nakdong river basin has high risk area in terms of soil characteristic

Cause analysis- soil loss

Soil loss comparing with storage volume of dam reservoir

- ✓ Multi-purpose dam : Imha>Chungju>Soyang>Youngdam
- ✓ Water supply dam : Gwangdong>Doam>Daeam>Yeoncho

Han and Nakdong river basin has relatively high soil loss potential

Turbid water potential analysis-indicator development

Indicator selection and standardization

Weight selection by expert panel analysis using AHP and ANP

Risk Map development and DB management

