The 7th ICG Meeting of GEOSS Asian Water Cycle Initiative (AWCI) 5-6 October 2010, Tokyo, Japan

8. Preparation for Implementation Plan for Climate Change: 12:15-12:30, 6 Oct 2010

Hydrological modeling and applications for improved Integrated Water Resources Management

Lei Wang & Toshio Koike

Correspondence to: wang@hydra.t.u-tokyo.ac.jp

Global Drought (September 2010)

Global Flood Events (1985-2006)

Economic

Damage

43.4%

Overall Strategy

Satellite

Observation

Land Surface Models Distributed Hydrological Models

Representative

Water and Energy Budget-based Distributed Hydrological Model

Wang, 2007, PhD thesis

(Water and Energy Budget-based Distributed Hydrological Model)

WEB-DHM

Incorporating sub-grid topography, but with high efficiency

Simplification of a big model grid to a long hillslope element

(a) Big grid with DEM-derived streams (total length = Σ L).

(b) Hillslope element with one virtual stream (length = Σ L).

Applicability of WEB-DHM to large river basins.

Improvements of WEB-DHM over SiB2

Rawls et al.(1992), Braun and Schadler (2005)

Comparison of daily streamflows at Murakami

WEB-DHM is a solution for flood and drought

Little Washita Basin, USA

Hourly simulation with 500 m grid size

Model Evaluations with SGP97&SGP99 Observations

The upper Tone River Basin, Japan

Hourly Annual Largest Flood Peak

Japan-China cooperative JICA Project: Technical support in China

41 engineers from China Institute of Water Resources and Hydropower Research, China Meteorological Administration and its provincial branches, Institute of Tibetan Plateau/CAS, & Nanjing University

The 0-36h real-time flood forecasting, Nanpan River

Drought study in Pampangga River Basin, Philippines

Drought identification, Pampangga River Basin, Philippines

WEB-DHM coupled with SCE for improved reservoir operation in Red River Basin, Vietnam

Add a reservoir module

Couple with SCE for optimization

The Red River Basin, Vietnam

The Red River Basin: 160,000 km² Lead-time dam operation system

$$MinimizeF = w_1 \left(\sum_{t=1}^{T} \frac{1}{T} \left(H_{ds_sim} - H_{ds_opt} \right)^2 \right) + w_2 \left(\sum_{t=1}^{T} \frac{1}{T} \left(R_{dam_sim} - R_{max} \right)^2 \right)$$

Lead-time optimization: JMA-GPV forecasts

Operation: the corrected GSMaP rainfall with gauge data

Flood Control (FC) / Water Use (WU) can be changed: w1 : w2 =FC : WU

Improving the <u>snow physics</u> of WEB-DHM

1-Aug 1-Sep 2-Oct 2-Nov 3-Dec 3-Jan 3-Feb 6-Mar 6-Apr 7-May 7-Jun 8-Jul Date

site2

60

30 20 Snow

(IIIII 50

melt runoff 40 - Obs. - WEB-DHM - WEB-DHM-S

Thank you for your attention!

Lei Wang (wang@hydra.t.u-tokyo.ac.jp)