

Preparation for Implementation Plan for Climate Change Assessment & Adaptation Hydrological Modeling

2010. 10. 6

Deg-Hyo Bae (dhbae@sejong.ac.kr)

Department of Civil & Environmental Engineering, Sejong University, Seoul, Korea

General Process for Climate Change Study

Climate change impact, vulnerability and adaptation studies on water resources

Climate change studies on AWCI framework

Toward Climate Change Adaptation

Flowchart of an implementation plan toward assessing impacts of climate change and preparing adaptation strategy – resulting version from breakout group discussions.

Adopted from T. Koike 2010

Review of Hydrologic Model

What kinds of hydrologic models used for CC study

Keyword : climate change / water resources, water supply, hydrology

Total number of paper : 56 (Journal of Hydrology, Water Resources Management, Climatic Change etc.)

Characteristics of the selected hydrological models

Model	Agency	Model type	Evapotranspiration	Runoff
DBHM	University of Tokyo	Distributed	Penman-Monteith	Surface Groundwater
Hydro-BEAM	University of Kyoto	Distributed	Thornthwaite	Surface Subsurface Groundwater
PRMS	USGS (US)	Semi-dis.	Hamon Jensen-Haise	Surface Subsurface Groundwater
SIMHYD	University of Melbourne	Lumped	Input data	Surface Subsurface Groundwater
SLURP	Hydrologic-Solutions (UK)	Semi-dis.	Penman Monteith Spittlehous-Black Granger	Surface Subsurface Groundwater
SWAT	USDA (US)	Semi-dis.	Penman-Monteith Priestley-Taylor Hargreaves	Surface Subsurface Groundwater
VIC	University of Washington	Distributed	Penman-Monteith	Surface Baseflow

Theoretical Overview of selected models

Global hydrologic model

- The VIC(Variable Infiltration Capacity) model is soil vegetation atmospheric transfer scheme that considers both energy and water balances
- A grid-based macro-scale model that is usually implemented at various spatial scales from 1/8 °to 2°
- Widely used for analyzing the variations of water resources due to climate change

Application domain

Model applications on Korean domain with global/local data

Hydrological models for demonstration basin/national level

- SWAT (Soil and Water Assessment Tool)
 - Developed by USDA-ARS (Arnold et al., 1998)
 - Applied to predict the effects of climate and vegetative change, groundwater withdrawals and reservoir management

PRMS (Precipitation-Runoff Modeling System)

- Developed by USGS (Leavesley et al., 1983)
- Designed to analyze the effects of precipitation, climate and land use on streamflow and general basin hydrology

SLURP (Semi-distributed Land Use-based Runoff Processes)

- Conceptual model which is capable of use as a fully-distributed hydrologic model (Kite, 1978)
- Developed for use in meso-scale basins as an alternative to the use of larger models

Comparison of soil moisture accounting methods

It generally perform as an algebraic summation of all moisture accretions and depletions from the soil profile

- The depletions usually include evapotranspiration, lateral flow and percolation, while the accretions consist of rainfall and snowmelt input to the system
- The models have different structures on their model development purposes
 - Maximum number of layers: 10 with free & tension field each for SWAT, 2 with recharge zone and lower zone for PRMS, 1 with free water and tension water

Potential evapotranspiration computation methods

Model	Evapo- transpiration	Snowmelt	No. of soil zones	Runoff components	Routing	Members
PRMS	Hamon Jensen-Haise	energy balance method	2	surface flow subsurface flow groundwater	None	PR-HA PR-JH
SWAT	Penman-Monteith Priestley-Tayor Hargreaves	degree-day method	2	surface flow Interflow groundwater	Muskingum	SW-PM SW-PT SW-HG
SLURP	Penman-Monteith* Morton CRAE Granger * Spittlehouse/Black * Linacre	modified degree- day method	1-6	surface flow subsurface flow groundwater	Muskingum	SL-PM SL-GR SL-SB

Applications of the models

Performance of SWAT, PRMS and SLURP on 6 dam basins

Several Hydrologic Issues on CC Study

Uncertainties on climate change impact assessment

Several studies have assessed the climate change impact on Korean water resources (Bae et al. 2008, Climate Research 35, pp.213-226)

GCM	ECHO-G	
Dynamic downscaling	MM5	
Statistic downscaling	LARS-WG	
Hydrologic	DDMO	

Uncertainties sources on CC impact assessment

- Uncertainties are existed within the whole process, namely GCM projection, downscaling and hydrologic modeling process
- Hydrologic uncertainties of climate change on IPCC AR4 GCM simulations in Chungju basin, Korea (submitted to J. of hydrology)
 - The 8 hydrologic models having similar performance of runoff simulations during past observation periods show different results when GCM outputs are used
 - In particular, the difference are significant for the winter season in this study area
 - It represents that except for winter season, the uncertainties from the selection of hydrologic models are smaller than those of GCM outputs

Why does multi-model ensemble is needed?

Estimation of hydrologic model parameters for ungauged basins

Regionalization method based on basin characteristic relationship

Regionalization method using multivariate statistical analysis

(Lee et al., 2009 JKWRA)

Application of regionalization method

Proposed hydrologic models for CC Adaptation

Selection of hydrologic model

Selection of hydrologic model depends on area scale and model performance

Multi Model Ensemble (MME) approach

Expected major outputs

> Annual variations of water cycle components under A2 climate change scenario

Changes in seasonal runoff

 Significant increasing trends of runoff in fall and winter, decreasing in spring and summer

Variations of extreme events

- Extreme discharge increases in the future periods, especially for the runoff depth more than 100 mm

Concluding Remarks for Future Study

Thank you

