Decision support systems using optimization algorithms at AWCI demo basins

Oliver Saavedra¹⁾ and Toshio Koike²⁾

Department of Civil Engineering 1) Tokyo Institute of Technology 2) University of Tokyo

Data/models

Information

Regional & basin interaction

Floods in South-East-Asia

- Heavy rainfall brings expected rainfall for agriculture but they might also turn into floods causing d a m a g e s.
 Need 1: Emission of flood warning to perform evacuation timely
 - Basins with existing gated dams when operated effective and jointly they are able to reduce flood damage dramatically.

Need 2: Dam release decision to reduce flood peaks and store volume for water-use

System Development under Floods

• <u>Dam Re</u>lease <u>Support System</u> (DRESS)

Goal: Dam release decision support to reduce flood peaks and store volume for water-use

• <u>Flo</u>od <u>Warning Support System (FLOWSS)</u>

Goal: Emit flood warning to perform evacuation timely

Overview of **DRESS** System

Error evaluation window

Integrated error evaluation

Forecast error as function of

1. Location: analysis area defined by buffers

2. Intensity: ratio of maxima and mean

3. Extension: % of covered evaluated zone

Contingency Table for Rain Events

		Approx.	
	Too little	Correct	Too much
Close	Underestimate	Hit	Overestimate
Far	Missed event	Missed Location	False alarm

Ebert & McBride (2000)

Ensemble member generation of QPF

 $GP(x, y)_{k} = Max \left\{ QPF(x, y) \times (1 + A\varepsilon N(0, 1) \times wi_{sub} + B\varepsilon N(0, 1) \times wi_{tot}), 0 \right\}$

N(0,1) : Gaussian normal distribution

wi_{sub} : weight per sub basin; wi_{tot} : weight per sub basin

Saavedra, Koike et al., 2010

A, B : preference

Combined Objective Function

 $Minimize \quad \left\{ Z = weight_1*Vol_flood + weight_2*\sum Vol_free_dams \right\}$

Upper bound: $\mu + \sigma$

 $Opt_var_{dam} = release_{dam}$

Initial guess: μ

Lower bound: μ - σ

Upper Tone Reservoir System

- 1. Fujiwara (12%)
- 2. Aimata (3%)
- 3. Sonohara (15%)
- 4. Yamba (21%)

The reservoir system comprises 3304 km²

WEB-DHM

Subbasin

Model) Flow Intervals 8 outlet

λET

River

Surface flow

Datum

Hydrographs (2001-2004)

Wang, Koike et al., 2009

Land Surface Temperature validation

Satellite Observation

10:30 March 13, 2001 (JST)

Wang, Koike et al., 2009

WEB-DHM simulation

Meso scale model (MSM) at JMA

- Computational domain
- Dynamics
 - Split explicit scheme(HE-VI)
 - Stable operation with relatively large time step
 - : 40 seconds \rightarrow 24 seconds

Use a non-hydrostatic model (JMANHM) operationally. Until Feb. 2006, From Mar. 2006, Horizontal resolution : 10km → 5km Forecast 4 times a day → 8times a day Forecast hour: 18hours → 15 hours

- Moist process
 - Cloud microphysics(3-ice : cloud ice, snow, graupel)
 - Convective parameterization (Kain-Fritsch)

HARA T., JMA, 2007

Evaluated events

1) 2002 Jul 7~9
 2) 2003 Aug 8~10
 3) 2004 Oct 20~23

$2002.07.09.21z \rightarrow 2002.07.10.15z$

FORECAST

OBS. RADAR

$2003.08.08.21z \rightarrow 2003.08.09.15z$

FORECAST

OBS. RADAR

$2004.10.20.03z \rightarrow 2004.10.20.21z$ Forecast(GPV2)

OBS. RADAR

Precipitation ratios QPF over RAD

Weighting Table

Ratio = Intensity_{QPF} / Intensity_{OBS} > 1 Overestimation < 1 Very close forecast < 1 Underestimation

(50% of maxima & 50% of mean)

Overestimation

Underestimation

Intensity ratio ranges

	0 - 0.1	0.1 - 0.4	0.4 - 0.7	0.7 - 0.9	0.9 - 1.1	1.1 - 1.3	1.3 - 1.6	1.6 - 1.9	> 2.0
At basin	2.0	1.5	1.0	0.5	0.0	0.5	1.0	1.5	2.0
1 st buffer	3.0	2.5	2.0	1.5	1.0	1.5	2.0	2.5	3.0
2 nd buffer	4.0	3.5	3.0	2.5	2.0	2.5	3.0	3.5	4.0
3 rd buffer	5.0	4.5	4.0	3.5	3.0	3.5	4.0	4.5	5.0
All domain	6.0	5.5	5.0	4.5	4.0	4.5	5.0	5.5	6.0

Event 2002 Jul 7~

Ensemble precipitation forecast

weight1 = 1; weight2 = 0.5; Weight3 = 0.5

Ensemble discharge w/o dams

Event 2003 Aug 8~

weight1 = 6; weight2 = 6; Weight3 = 6

Ensemble discharge w/o dams

Event 2004 Oct 8~

Ensemble precipitation forecast

Ensemble discharge w/o dams

Dam release uncertainties event 9-10 Jul 2002

Dam release uncertainties event 8-9 Aug 2003

Dam release uncertainties event 19-20 Aug 2004

Results: event 2002 Jul 9~11

Results: event 2003 Aug 8~10

TOTAL GAIN:

15.45 MCM

Results: event 2004 Oct 20~

Evaluation of the DRESS system's performance

	Flood Peak	Gain or Loss at	Gain or Loss at	Gain or Loss at	Total Gain or
	reduction at	Fujiwara	Aimata	Sonohara	Loss, reservoirs
Event	control point [%]	reservoir [MCM]	reservoir [MCM]	reservoir [MCM]	[MCM]
2002.07	18.14	10.45	8.28	17.43	17.43
2003.08	28.03	5.36	-1.76	11.85	11.85
2004.10	7.6	5.24	-4.98	7.82	7.82

Overview System FLOWSS

Huong River, Vietnam

Results of the model

Global Satellite TRRM, 3hr, 0.25° Nov 1997~ TRMM focuses mainly in tropical area

- 2km

GPM, 3hr, 0.1° will reach 95%

High Flows Simulation

Inundation areas in Hue City

Results obtained by Vietnamese Forecasters (a), MONROE/NHMS

Oct-Nov 2008

Summary

- According to the needs in Flood damage reduction, it is proposed two systems:
 - <u>Dam Re</u>lease <u>Support System</u> (DRESS)
 - <u>Flo</u>od <u>Warning Support System (FLOWSS</u>)
- DRESS systems show efficiency in reducing floods and increasing water storage where dams are available; while FLOWSS can be used for emission of flood warning.
- QPF, real-time satellite precipitation and on-site observation were used to feed the systems
- It was possible to extend the lead-time which is crucial for sound decisions in water resources management

Next steps for the systems

- Application of customized versions of
 DRESS & FLOWSS systems to needed demo basins for real-time operation
- Exploit of Satellite observations e.g. GSMaP
- Include other forcing in the ensemble besides precipitation
- Include economic costs directly in the systems using the value of water allocation or false alarm warning in the cost functions

Location of CB Training Modules

Capacity Building Programs

- 1) Country level capacity building targeting local audience (Bandung, July 2008; China, 2009)
- 2) Specific Training Modules provided by Agencies/Institutions to experts/scientists (Vietnam, Nov. 2008 at UT)
- 3) Integrated capacity at each AWCI demonstration basin targeting international participants

Thanks for your attention!

