Global glacier modeling

Institute of Engineering Innovation The University of Tokyo

Global glacier model

Glacier mass changes for 1948-2007

<u>Global glacier model "HYOGA"</u>

Hirabayashi et al., 2010, Journal of Hydrology

- $\mathbf{0.5}^{\circ} \times \mathbf{0.5}^{\circ}$ global glacier model with daily time step.
- Mass balance of snow pack and glaciers are estimated at each 50m vertical sub-grid of the 0.5° grid.
- Glacier and snow melting: Empirical Degree-Day Factor (another method (e.g., energy balance) will be developed..) Melt water [mm/day] = DDF [mm/C/day] x (T_a – T₀) (T₀ is critical temp. (many use 0[C]), T_a is temp. >T₀)

 Calibration of the model is done against climatology of measured mass balance. (regional averages of climatology are used for glaciers without mass balance observations)

Glacier mass change 1948-2006

Future projections of glacier melt

Estimation using bias-corrected climate forcing by GCMs

Analysis of impact on water resources, flood and drought frequencies are now investigating.

Problems of the current model

- 1. "Virtual" total volume
 - Detailed glacier area / type/ altitude information is limited.
 (We only have total area in 0.5-degree) (e.g. WGMS)

Fraction of glacier sizeLocation of glaciers, glacier types

- 2. Simple mass balance model
 - Check applicability under future climate change with different radiation forcing.
- 3. Limited validation at local scale
 - Validation of model performance at well observed glacier sites.

		wave length		reso.	
	band1	0.45-0.52 μ m	visible	30m	blue
	band2	0.52-0.60 μ m	visible	30m	green
	Band3	0.63-0.69μm	visible	30m	red
	band4	0.76-0.90μm	near-infrared	30m	chlorophyll
	band5	1.55-1.75μm	near-infrared	30m	water,veg.
	band6	10.4-12.5 <i>μ</i> m	thermal infrared	120m	surface temperature
	band7	2.08-2.35 μ m	intermediate- infrared	30m	mine resources

Problems of the current model

- 1. "Virtual" total volume
 - Detailed glacier area / type/ altitude information is limited.
 (We only have total area in 0.5-degree) (e.g. WGMS)

Fraction of glacier size &Location of glaciers, glacier types

- 2. Simple mass balance model
 - Check applicability under future climate change with different radiation forcing.
 Energy balance model
- 3. Limited validation at local scale
 - Validation of model performance at well observed glacier sites.
 Switzerland, India, Nepal