

Kazuhiko FUKAMI, Takahiro SAYAMA, Seishi NABESAKA, Takahiro KAWAKAMI and Go OZAWA

Hydrologic Engineering Research Team,

International Center for Water Hazard and Risk Management under the auspices of UNESCO (UNESCO-ICHARM),

Public Works Research Institute (PWRI), Tsukuba, Japan

Flood Disasters in Pakistan

ICHARM

Ali Mardan leads his two donkeys through floodwaters near Sukkur, Sindh province

Extent of the flooding in Sindh province

MapAction

Pakistan - Flood Extent (07 Sept 2010) and Flood Losses (13 Sept 2010)

OCHA

Flash Flood Disasters in Northwestern Part (7.29, 30) ICHARM

An aerial view shows Nowshera city submerged in flooding caused by heavy monsoon rains in Pakistan on Friday, July 30, 2010. (AP Photo/Mohammad Sajjad)

Pakistani flood survivors cross a bridge near a damaged home in Medain, a town of Swat valley on August 2, 2010. (A Majeed/AFP/Getty Images)

Residents watch water pour through a street on the outskirts of Peshawar, Pakistan on July 28, 2010. (A Majeed/AFP/Getty Images)

Overview of meteorological condition

Table.1 Comparison of monthly and daily precipitation at Lahore (PBO)

Table.3 Comparison of monthly and daily precipitation at Dir

CHARM

Hydrologic modeling with satellite-based rainfall data for Emergency Response

- > Cannot access to the disaster stricken areas after mega-disasters.
- Remote sensing (+ some local info) are the only sources for estimating the conditions of the disaster (UNOSAT, Dartmouth Flood Observatory, OCHA etc)
- Governments need to rely on the limited information for emergency responses.

Inundated map by UNOSAT July 29: Flash Flood Aug 1: Detected by MODIS satellite Aug 2: Release the inundation map

- Does a inundation map based on remote sensing detected two days after the flash flood correspond to the damaged area?
- Can a hydrologic model with satellitebased rainfall data provide complementary information?

Integrated Flood Analysis System IFAS Toolkit to implement "Global Flood Alert System (GFAS) – Streamflow"

Example of Satellite-based rainfall data disclosed without cost through internet

Product name	3B42RT	CMORPH	QMORPH	GSMaP_NRT		
Developer and provider	NASA/GSFC	NOAA/CPC	NOAA/CPC	JAXA/EORC		
Coverage		N60°	- S60°			
Resolution	0.25°	0.25°	0.25°	0.1°		
Resolution time	3 hours	3 hours	0.5 hour	1 hour		
Time lag	10 hours	15 hours	2.5 hours	4 hours		
Coordinate system	WGS					
Historical data	Dec 1997-	Dec 2002-	nearest past 2 days	Dec. 2007~		
Sensors	TRMM/TMI Aqua/AMSR- E AMSU-B DMSP/SSM/I IR	Aqua/A AMS DMSP/ TRMN IF	TRMM/TMI Aqua/AMSR-E ADEOS- II / AMSR SSM/I IR AMSU-B			

GSMaP_NRT

JAXA, JST-CREST (Prof. Ken'ichi OKAMOTO, Osaka Pref. Univ. et al.) ICHARM/PWRI

http://sharaku.eorc.jaxa .jp/GSMaP/index.htm

We offer hourly global rainfall maps in near real time (about four hours after observation) using the combined MW-IR algorithm with <u>TRMM TMI</u>, <u>Aqua AMSR-E</u>, DMSP SSM/I and GEO IR data. This system was developed based on activities of the JST-CREST <u>GSMaP (Global Satellite</u> <u>Mapping of Precipitation)</u> project.

Description							
Variable	:	Rainfall rate (mm/hr)					
Domain	:	Global (60N - 60S)					
Grid resolution	:	0.1 degree lat/lon					
Temporal resolution	:	1 hour					

Algorithm for self-correction of satellite-based rainfall data

without any ground-based rainfall data

Design concept of IFAS

- 2. To adopt two types of distributed-parameter hydrologic models, the parameters of which can be estimated as the first approximation based on globally-available GIS databases to secure the worldwide availability of hydrologic models for flood forecasting/analysis.
- 3. To implement GIS analysis modules in the system to set up the parameters for the flood forecasting/analysis model, therefore no need to depend on external GIS softwares.
- 5. To prepare a series of easy-to-understand graphical user interfaces for data input, modeling, runoff-analysis, and displaying the outputs.
- 6. To distribute the executable program, free of charge, from the ICHARM/PWRI website

Flood runoff analysis model creation using global GIS data

	import data	
Туре	Product	Provider
	Global Map(Elevation data)	ISCGM
Elevation	GTOPO30	USGS
	Hydro1k	USGS
	GLCC	USGS
Land use	Global Map(Land cover)	ISCGM
	ProductProGlobal Map(Elevation data)ISCGTOPO30USHydro1kUSGLCCUSGlobal Map(Land cover)ISCGlobal Map(Land use)ISCGeologyCGSoil TextureUISoil Water Holding CapacityUISoil DepthG	ISCGM
Geology	Geology	CGWM
	Soil Texture	UNEP
Soil type	Soil Water Holding Capacity	UNEP
	Soil Depth	GES

Import data

Example of elevation data of a each cell and a river channel network

ICHÀRM

Creation of River channel net work and basin shape based on elevation data

Parameter estimation using global GIS

GIS analysis function

Interface display

Calculation result (Hydro)

Calculation (Plane view)

Plane view on Google Map

GSMaP_NRT as an input data for Simulation

ICHARM

	GSMaP_NRT [mm/day]						Ground-gauged [mm/day]							
day	PESHAWAR	AIDU_SHAR	CHERAT	ISLAMABAD	CHILAS	PARACHINAI	DROSH	PESHAWAR	AIDU_SHAR	CHERAT	ISLAMABAD	CHILAS	PARACHINAR	DROSH
27	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	4.0	1.0	0.0	0.0	2	0.0
28	3.0	1.5	7.6	3.3	3.3	1.3	15.9	0.0	44.0	33.0	68.0	2.0	20	23
29	31.5	35.5	43.5	8.0	0.0	2.2	24.1	274.0	187.0	257.0	31.0	8.0	21	61
30	14.3	32.9	15.7	17.6	3.1	15.9	4.5	59.0	103.0	81.0	120.0	26.0	20.0	15
31	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0	0.0
Total_R	48.8	69.8	68.2	28.9	6.5	19.5	44.5	333.0	338.0	372.0	219.0	40.0	63	99
			(GG/C	GSMaP_NR	T)[倍]					ı				
day	PESHAWAR	AIDU_SHAR	CHERAT	ISLAMABAD	CHILAS	PARACHINA	DROSH	average	ave-thies	en				
27	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.1	0.0	no-rain				
28	0.0	30.3	4.4	20.5	0.6	15.5	1.4	10.4	11.1					
29	8.7	5.3	5.9	3.9	0.0	9.4	2.5	5.1	6.0					
30	4.1	3.1	5.2	6.8	8.3	1.3	3.3	4.6	3.2					
31	0.0	0.0	0.0	0.0	35.9	0.0	0.0	5.1	3.1					
Total_R	6.82	4.84	5.45	/.58	6.14	3.24	2.22]						
(Most of heavy rai														
≻C Thi	alcula essen	iting ra	atio gin (POLEIKHOMRI			DROSH	4.84 SHARE	CHILAS	31	st in e	ach	
≻N ≻S	lultiply elf-co	ving th	ne ra	S.S.E.		324 PARACHI RDEZ	NAR	6.82 HAWAR-city CHERAT	ELAMABAD RAMABAD	A/P DUCH	SOPOR SRIVAC			
			1			5-	BANNU	Daud Khel	Chakwal	0 100	km			

Another new approach: Rainfall-Runoff-Inundation Model

- Both river discharge and inundation are simulated simultaneously with rainfall input.
- The model is being developed for real-time flood predictions and/or quick estimations of flood extent immediately after flood disasters.
- It also utilizes globally available dataset; model application can be completed in a short time.

2D Rainfall-Runoff-Inundation Model

SLOPE CALCULATION

Octagon Grid: Quinn, Beven etal, Vol.5, 59 - 79, HP1991

Mass balance

$$\frac{dh_i}{dt} = r_i - \frac{1}{A_i} \sum_j q_{ij} b_{ij}$$

 r_i : Rainfall, h_i : Water depth, b_i : Width, A_i : Area

$\frac{h_i}{\gamma} H_i \qquad q_{ij} \qquad H_j$

Saturated subsurface : Darcy Flow

 $q_{ij} = K_{eff} I_e h_i$

 K_{eff} : Saturated hydraulic conductivity $I_e = \frac{H_i - H_j}{L_{ij}}$: Hydraulic gradient

Saturated subsurface, surface : Darcy + Manning Flow

$$q_{ij} = K_{eff} I_e h_i + \frac{1}{n} \sqrt{I_e} (h - d_A)^{5/3}$$

- n : Surface roughness
- d_A : Effective soil depth ($D x \gamma$)

Simulation conditions

Simulation Period July 27 0:00 – Aug 2 0:00 (GMT) : 6 days (144h)

Simulation Domain (~92,605 km²)

Grid cell size: 30 sec (761 m x 924 m)

Number of grids inside the basin : 131,489

River width = $2.5 \text{ A}[\text{km}^2]^{0.4}$

River depth = 0.1 A[km²] ^{0.5}

Sim. Time: ~ 10 hrs

Simulated Peak Water Height [m]

ICHARM

http://www.reliefweb.int/rw/fullmaps_sa.nsf/luFullMap/1063BC946E38009685257788006FF75B/\$File/map.pdf?OpenElement

Conclusion

- The combination of satellite-based rainfall information, global GIS data and IFAS (Integrated Flood Analysis System), a practical toolkit for local users, especially for developing countries to integrate all those global information, has a very high potential to make prompt flood analyses even in poorly-gauged river basins.
- The application of a new Rainfall-Runoff-Inundation model was also successful to interpolate missing satellite-based information on flood inundation area caused by flash flood.
- On the other hand, it should be also noted that, without any insitu (ground-truth) data, such integrated information & analysis cannot be assured, verified nor improved.
- It is, therefore, indispensable to couple satellite & global GIS data with in-situ (geographical, geophysical and hydrologic) data in order to improve the quality (accuracy) of the integrated information & analysis and to upgrade the range & depth of application. The importance of in-situ hydrologic data is everlasting.

Thank you for your attention!

http://www.icharm.pwri.go_jp/

Fukui City on the left bank side of the Asuwa River (photographed on July 18)

Fukui City on the left bank side of the Asuwa River (photographed on July 18)