Flood detection using ScanSAR imagery - A case study in Pakistan

Masanobu Shimada

ALOS Science Manager Earth Observation Research Center Japan Aerospace Exploration Agency Sengen 2-1-1, Tsukuba, Ibaraki, Japan, 305-8505 Tel: 050-3362-4489, Fax:029-868-2961, e-mail: shimada.masanobu@jaxa.jp

ScanSAR and Strip SAR

Wide-swath and low resolution vs. Narrow-swath and high resolution

Swath 350km <-> 70km Resolution 100m <-> 10m

ScanSAR preserves sensitivity and the resolution.

1995 to 2009 Forest Change in South America

•Environmental monitoring (including the disaster, forest, climate) has been a very important issue.

•Spaceborne SAR has become a stable sensor.

•Geophysical parameter estimation, quick provisions, and large scale information are required.

SCANSAR multi looking

Chirp-z FFT, FFT are used.

SCANSAR幾何精度

幾何学精	度	F
azimuth:		50m
range	:	50m

SCANSAR image using the updated antenna pattern and scan-to-scan normalization factors

Transmission power monitor

Variation of the Pt Over 80 TRM

Std Dev. Of Pt

Radiometric/Geometric calibration using the CRs Mode and time dependency over last three years

Incidence angle dependence of the gamma naught Evaluation conducted using the Amazon data

Strip modes

ScanSAR data

Summary of the PALSAR CALVAL results

Items₽	Measured values#		No. of Data	Specification	
geometric	9.7m(RMS): STRIP mode		572¢ ²	100m* ¹	
accuracy ⁴ 70m(RMS): SCANSA		.R∉			
radiometric accuracy ⁴¹	0.219 dB(1 sigma) from Amazon forest+ 0.76 dB (1 sigma) from CRs+		*' 572+	1.5 dB+ 1.5 dB+	
	0.17 dB (1 sigma: Swe -34 dB (Noise equival -32 dB (as a minimum -29 dB (as a minimum	den CRs)↔ ent Sigma-zero for HV)↔ of FBD-HH)↔ of FBS-HH)↔	164	1.5 dB↓ -23 dB↓	
Polarimetric calibration ⁴	VV/HH ratio + VV/HH phase diff+ Crosstalk+	1.013 (0.062)*↓ 0.612deg(2.66)*↓ -31.7 (4.3)↓	814	0.2 dB↔ 5 deg.↔ -30 dB↔	
resolution.4	azimuthe range (14MHz)e range (28MHz)e	4.49 m (0.1) *+ 9.6m(0.1m) *+ 4.7m(0.1m)*+	5724	4.5m≠ 10.7m≠ 5.4m≠	
Side lobe#	PSLR in azimuth# PSLR in range# ISLR#	-16.6dB+ -12.6 dB+ -8.6 dB+	5724	-10dB↔ -10dB↔ -8dB↔	
Ambiguity ⁴⁰	Azimuthe Rangee	not appeared + 23 dB+	4	16dB↓ 16 dB↓	
Transmission power ⁴⁰	Sum of 80 TRM₽	2220₩4	¢.	2000₩4	

Note: A (B)* represents an average value of A and a standard deviation of (B). PSLR is Peak-to-Side-Lobe Ra ISLR is Integrated Side-Lobe Ratio.+

Determination of the scattering point

Iterations/approximation

h :Height from the geoid h_{geoid} :Geoid

> Features Solutions are accurate. However, layover and shadowing areas are suffered from the non-solution problems.

Geometric Evaluation Result

TABLE IV Geolocation Accuracy Measurement for the Ortho-rectification Image and Slant Range Image

Off-nadir Angle (°)	Geolocation Error (ortho: m)	Geolocation Error (Slant: m)
21.5	17.383 (7.211, 21)	13.19 (5.267, 28)
34.3	11.925 (7.266, 104)	8.244 (4.716, 124)
41.5	9.488 (5.127, 50)	7.286 (4.017, 56)
Total Value in RMSE	12.103 (6.718, 175)	8.885 (4.619, 208)

Note: Values in each element are RMSE defined Eq. (28) (standard deviation, number of samples)

G_err_ortho ~12.10m (RMSE)

Position estimation of the ortho-rectified image

No.	Latitude	Longitude	Height (m)	$\Delta x(m)$	Δy (m)	$\Delta s(m)$
Ascending	N35□20Õ13.0Ó	E138□43Õ57.0́O	2410.625	0.253	3.092	3.102
Truth (asc)	N35 🗆 20Õ12.9́Ø	E138 🗆 43Õ57.020	2412.449			
Descending	N35 20Õ13.090	E138 🗆 43Õ55.900	2410.000	3.040	3.711	4.797
Truth (desc)	N35□20Õ12.9∕Ø	E138 43Õ55.780	2412.449			

TABLE V Comparison of the Ortho-rectified Geometric Accuracy

Radiometry:Slope corrections on σ^0 and γ^0

$$\tilde{\sigma}^{0} = \sigma^{0} \frac{\cos \psi}{\sin \theta} \frac{1}{LIAC}$$
$$\theta_{l} = \cos^{-1} \left\{ \frac{\left(\mathbf{r}_{s} - \mathbf{r}_{p}\right)}{\left|\mathbf{r}_{s} - \mathbf{r}_{p}\right|} \cdot \mathbf{n}_{l} \right\}$$
$$\mathbf{n}_{l} = \frac{1}{\sqrt{h_{x}^{2} + h_{y}^{2} + 1}} \left(\begin{array}{c} h_{x} & h_{y} \\ \end{array} \right)^{t}$$
$$\cos \psi = \mathbf{n}_{f} \cdot \mathbf{n}_{l} = \frac{\sin \theta_{l} - \cos \theta_{l} \cdot h_{x}}{\sqrt{h_{x}^{2} + h_{y}^{2} + 1}}$$

$$LIAC \sim 10^{d\theta_l}$$

$$\gamma^{0} \equiv \frac{\sigma^{0}}{\cos \theta_{local}} \frac{\cos \psi}{\sin \theta_{inci}}$$
$$\theta_{local} = \cos^{-1} \left\{ \frac{\left(\mathbf{r}_{s} - \mathbf{r}_{p}\right)}{\left|\mathbf{r}_{s} - \mathbf{r}_{p}\right|} \cdot \mathbf{n}_{l} \right\}$$

-9

-10

-11 -11

-10

-9

-8

σ0 mean -7.81 (std dev. 1.34) v0: mean -6.73 (std dev:

1.10)

-3

7. Mosaicking and SAR Strip Processing

Advantages: Global researches Temporal variation Reduce the number of images : 86400 -> 1000

Requirements

Geometric and radiometric collocations

Geometric accuracies

Co-registration: 0.261,0.277

Accuracy: 34.14: Landsat-mosaic Accuracy: 11.00:CR-mosaic

Tabl	e IV Summary of Geolog	cation RMSE of the JAX	A PALSAR Mosaic		Į
Area	Northing RMSE (m)-	Easting RMSE (m)+	Total RMSE (m)	No. of GCPs	
Japan (2007).	22.81(-112.9,43.8)	34.20(-114.2,69.9)	41.11(0.0,119.3)-	104.	
Borneo-Jawa (2007)+	23.13(-76.7,71.1)+	32.15(-94.5,49.4)	39.61(0.0,98.0)+	104.	
Sumatra (2007)+	27.98(-96.9,65.8)+	30.03(-86.3,60.7)+	41.05(0.0,129.8)+	70₊	
Philippine (2007).	17.19(-35.67,35.66)+	16.86(-26.89,33.23)+	24.08(0.48,43.56)+	49 ₽	
Philippine (2009).	22.83(-54.90,74.90)	29.34(-75.18,39.54)+	37.17(0.02,98.39)+	101.	
Borneo-Jawa (2009)	24.79(-62.75,71.95)+	30.23(-79.32,26.33)+	39.09(0.0,85.42)+	83.	
Sumatra (2009)+	26.42(-50.9,67.1)+	32.99(-131.9,39.7)+	42.26(0.0,131.9)+	83.	
Japan (2009).	26.46(-55.8,52.3)+	33.26(-90.0,61.3)	42.50(0.0,99.8)+	69 ¢	
Indochina (2009)4	27.96(-52.5,72.9)+	30.60(-92.8,75.5)+	41.45(0.0,118.0)	89.0	
Central Africa (2008)-	24.30(-46.7,47.4)+	21.16(-48.2,42.3)	32.22(2.9,63.0)+	131.	
Central Africa (2009)+	16.52(-35.17,30.81)	16.20(-39.16,35.88)+	23.14(2.73,44.36)+	147.	
Sulawesi (2007)4	17.01(-35.14,31.79)	15.44(-30.68,37.59)+	22.98(2.30,43.27)+	68.0	
Sulawesi (2009)4	15.38(-33.76,33.74)+	16.21(-41.20,34.76)+	22.35(0.85,45.16)+	6 7 -	
Australia (2009)	19.66(-44.41,30.90)+	18.91(-41.28,48.26)+	27.28(2.35,58.44)+	218e	
All₄	22.35+	25.81.	34.14	1393-	

Note: The numbers in brackets represent the minimum and maximum values respectively.4

Global Observation Scenario

High resolution wall-to-wall observation

PALSAR AVNIR-2 PRISM

Systematic, time-space consistent observations 46 days acquisition: (I.e., July 28 2009~ Sept. 11, 2009)

陸域観測技術衛星「だいち」 (ALOS)搭載のLバンド合成開口 レーダ(PALSAR;パルサー)によ るパキスタンの大雨の緊急観測 結果(3), Aug. 24, 2010 1) Sami Village 2) Multan 3) Faisalbad

Temporal Change of the flooded basin in Pakistan 8/5-7/19, 2010 8/22-7/19, 2010

8/5-7/19, 2010

8/22-7/19, 2010

8/5-7/19, 2010

8/22-7/19, 2010

陸域観測技術衛星「だいち」 (ALOS)搭載のLバンド合成開 ロレーダ(PALSAR;パルサー) によるパキスタンの大雨の緊急 観測結果 Aug. 19, 2010

Flood monitoring for Pakistan Heaven rain from July/End 2010.

PALSAR ScanSAR in HH polarization

Precise Co-registration of the before (Red) and after (Green and Blue) the flooding in two colors

Red: flooding and no or less signal backscatter (Aug. 5~ Aug. 29 2010, 6 strips)

Blue: increase of back scatter (June 27~July 19, 2010, 6 strips)

Ortho-slope corrected gamma-zero images

ALOS/PALSAR ScanSAR image mosaics over the Pakistan and Detection of Flooded areas

Oil Spill Monitoring at Gulf of Mexico

Oil Spill of Gulf of Mexico occurred on April 2010 has lasted for five months. More than ?? Of Oil were exosured on these areas.

Conclusion

PALSAR has high sensitivity to the disaster monitoring.

Slope-correction, ortho-rectification, mosaicking, and multi-time overlay processing can perform the change detection of the disaster area.

Insensitivity for the weather condition at ALOS/PALSAR can support the disaster mitigation.