AWCI Training Course on Improved Bias Correction and Downscaling Techniques for Climate Change Assessment including Drought Indices

**18-20 JUNE 2013, UNIVERSITY OF TOKYO** 

Estimation of Future Design Rainstorm under the Climate Change Scenario in Peninsular Malaysia

NURUL HUDA MD ADNAN, GOH YEE CAI RESEARCH CENTRE FOR WATER RESOURCES NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA (NAHRIM) MINISTRY OF NATURAL RESOURCES AND ENVIRONMENT



## **Objective of Technical Guideline**

- To assist engineers, hydrologists and decision makers in designing, planning and developing water-related infrastructure under changing climatic conditions.
- To introduce an approach of quantifying the scale of climatic change to surface water systems.
- The main purpose of this guideline is to derive climate change factor (CCF)
- CCF defined as the ratio of the design rainfall for each of the future periods (time horizons) to the control periods (present rainfall)





## **Technical Approach**











## STATISTICAL DOWNSCALING MODEL



## DYNAMIC DOWNSCALING MODEL -RegHCM-PM

 2006: A regional hydrologicatmospheric model of Peninsular Malaysia called as 'Regional Hydro-climate Model of Peninsular Malaysia (RegHCM-PM) was developed

 Downscaling global climate change simulation data (Canadian GCM1 current and future climate data) that are at very coarse resolution (~ 410km), to Peninsular Malaysia (West Malaysia) at fine spatial resolution (~9km) – for future period of 2025 to 2050 (2025-2034 & 2041-2050)



#### Adaptation Tool - **Regional Future Hydroclimate Data Retrieval System** for extreme events (9km x 9km) http://www.futurehydroclimate.nahrim.gov.my





# **BIAS CORRECTION**

|                   |               |         |                   |                              |                     | Bias cor                       | r tmp Alor Setar - N       | licrosoft Excel          |                                             |                |                       |                |                   | _ = X                |                                                  |                          |                                                |                     |                                         |                                      |                                 |
|-------------------|---------------|---------|-------------------|------------------------------|---------------------|--------------------------------|----------------------------|--------------------------|---------------------------------------------|----------------|-----------------------|----------------|-------------------|----------------------|--------------------------------------------------|--------------------------|------------------------------------------------|---------------------|-----------------------------------------|--------------------------------------|---------------------------------|
|                   | Hama Inc      |         |                   | t Executer f                 | Data Daviau         | Maur Davalana                  |                            |                          |                                             |                |                       |                | 0                 | a x                  |                                                  |                          |                                                |                     |                                         |                                      |                                 |
|                   | nome ins      | ien     | rage Layou        | t Porniulas t                | Jata Keview         | view Develope                  |                            |                          |                                             |                |                       |                | •                 |                      |                                                  |                          |                                                |                     |                                         |                                      |                                 |
|                   | 🕉 Cut         | Ca      | libri             | * 11 * A* *                  | = = - >             | Wrap Text                      | Number                     |                          |                                             | ) 🏣 🖏          | Σ Α                   | AutoSu         | - A               | 2                    |                                                  | Bias                     | corr tmp Alor Set                              | ar - Microsoft Exce | el                                      |                                      |                                 |
|                   | Сору          |         |                   |                              |                     |                                |                            |                          | 15 IN I                                     | р III III      | F 🕄 🖓 F               | ill * 👔        | Home Insert       | Page Lavout          | Formulas Data Review                             | View Devel               | ooer                                           |                     |                                         |                                      | 0                               |
| Paste             | 🏈 Format Pain | iter B  | ΙU                | · 🖽 • 🚺 • 🗛 •                | 토콜릴 (주              | 📰 Merge & Co                   | enter * \$ * %             | *.0 .00 Conc             | litional Format Ce<br>atting a stable style | II Insert Dele | te Format             | lear +         | X Cut             |                      |                                                  |                          |                                                |                     |                                         |                                      | The Σ AutoSum - Arm Al          |
| CI                | lipboard      | 5       |                   | Font 5                       | AI                  | ianment                        | Numbe                      | r G                      | Styles                                      | Cell           | 5                     |                | La Copy           | Calibri • 1          | $1 - \mathbf{A} \mathbf{x} = \mathbf{z} \otimes$ | Wrap T                   | ext Custon                                     | m •                 | - <b>1</b>                              | 1 🚽 🗂 🗹                              | i 🛄 🔐 👔 Fill - 🕺 🕅              |
|                   | A1            |         |                   |                              | .,, .,,             |                                | -1                         |                          | 50,000                                      |                |                       |                | J Format Painter  | B / U - 🖽            | · <u>◇</u> · <u>▲</u> · ≡ ≡ ≡ ≇                  | Merge                    | & Center * \$ *                                | % , 50 -20          | Conditional Form<br>Formatting * as Tab | iat Cell Insert Dele<br>ile Styles - | re Format 2 Clear * Sort & Find |
| <b>3</b> ") *     | (≅ * 2 ↓ ∓    |         |                   |                              |                     |                                |                            |                          |                                             |                |                       | a              | lipboard G        | Font                 | 6 J                                              | Alignment                | 5 I                                            | Number 😔            | Styles                                  | Cel                                  | s Editing                       |
|                   | O3            | - 🗸 💿   | fs                | c                            |                     |                                |                            |                          |                                             |                |                       | ~              | (?' × ≩↓ =        |                      |                                                  |                          |                                                |                     |                                         |                                      |                                 |
| 1                 | Å             | B       | C D               | E                            | F                   | G                              | Н                          | I                        | J                                           | K              | L                     |                | M9 •              | (* <i>f</i> x =5     | SUMPRODUCT((a1b_correct!\$C                      | \$3:\$C\$7307=\$C9       | )*a1b_correct!U\$                              | 3:U\$7307)/\$B9     |                                         |                                      |                                 |
| 1                 |               |         |                   |                              | Model 1             | Model 2                        | Model 3                    | Model 4                  | Model 5                                     | Model 6        | Model 7               |                | 8 B               | C                    | D E                                              | F                        | G                                              | Н                   | 1                                       | J                                    | K L                             |
|                   |               |         |                   |                              |                     |                                | cccma cgcm3 1              |                          |                                             |                |                       |                |                   |                      |                                                  | Daily                    | Average                                        | Precipit            | tation                                  |                                      |                                 |
| 2                 |               | yr      | mo da             | OBS                          | bccr_bcm2_0         | cccma_cgcm3_1                  | t63                        | cnrm_cm3                 | csiro_mk3_0                                 | csiro_mk3_5    | gfdl_cm2_0            |                | 18.00 т           |                      |                                                  |                          |                                                |                     |                                         |                                      |                                 |
| 2                 | 1/1/2046      | 2046    | 1 1               | 0.00                         |                     | 4 27                           | 2.06                       | 6.27                     | 0.25                                        | 0.12           | 0.                    | 01             |                   |                      |                                                  |                          |                                                |                     |                                         |                                      |                                 |
| 4                 | 1/2/2040      | 2040    | 1 2               | 0.00                         |                     | 4.37                           | 0.76                       | 5.01                     | 0.05                                        | 0.12           | 0.0                   | 01             | 16.00             |                      |                                                  |                          |                                                |                     |                                         |                                      | / OBS                           |
| а<br>с            | 1/2/2040      | 2040    | 1 2               | 0.00                         |                     | 4.30                           | 0.70                       | 5.01                     | 0.05                                        | 0.00           | 0.0                   | 26             | 10.00             |                      |                                                  |                          |                                                |                     |                                         |                                      | -cccma_cgcm3_1                  |
| 9                 | 1/3/2040      | 2046    | 1 3               | 0.00                         |                     | 1.21                           | 1.60                       | 0.45                     | 0.26                                        | 0.00           | 0                     | 20             |                   |                      |                                                  |                          |                                                |                     |                                         | Λ /                                  | -cccma cgcm3 1 t                |
| 0                 | 1/4/2046      | 2046    | 1 4               | 0.00                         |                     | 0.27                           | 12.73                      | 6.05                     | 0.04                                        | 0.00           | 0.0                   | 02             | 14.00             |                      |                                                  | Λ                        |                                                |                     | /                                       | 1 /                                  | -cnrm cm3                       |
| 7                 | 1/5/2046      | 2046    | 1 5               | 0.00                         |                     | 0.01                           | 5.08                       | 2.03                     | 0.10                                        | 0.00           | 0.3                   | 11             |                   |                      |                                                  |                          |                                                |                     |                                         |                                      | -csiro mk3 0                    |
| 8                 | 1/6/2046      | 2046    | 1 6               | 0.00                         |                     | 1.84                           | 2.63                       | 2.83                     | 0.10                                        | 0.00           | 0.0                   | 06             | 12.00             |                      |                                                  |                          |                                                |                     | N                                       |                                      | csiro_mk3_5                     |
| 9                 | 1/7/2046      | 2046    | 1 7               | 0.00                         |                     | 3.50                           | 1.59                       | 4.35                     | 0.18                                        | 0.00           | 0.0                   | 01             |                   |                      |                                                  |                          |                                                |                     | A                                       | 1   /                                | afd om2.0                       |
| 10                | 1/8/2046      | 5 2046  | 1 8               | 0.00                         |                     | 0.90                           | 2.06                       | 3.78                     | 0.00                                        | 0.00           | 0.4                   | 44             | 10.00 +           |                      |                                                  |                          |                                                | 1-1                 | 44                                      |                                      | gruome_u                        |
| 11                | 1/9/2046      | 5 2046  | 1 9               | 0.00                         |                     | 0.05                           | 1.59                       | 5.11                     | 0.00                                        | 0.00           | 0.0                   | 08             |                   |                      |                                                  | $  \land \rangle$        | _                                              | 1-P-                | XX                                      | AV.                                  | gidi_cmz_1                      |
| 12                | 1/10/2046     | 5 2046  | 1 10              | 0.00                         |                     | 0.01                           | 1.05                       | 9.70                     | 0.04                                        | 0.00           | 0.0                   | 02 8           | 8 00              |                      |                                                  |                          |                                                | 12                  | 54                                      | 11/                                  | giss_aom                        |
| 13                | 1/11/2046     | 5 2046  | 1 11              | . 0.00                       |                     | 0.39                           | 1.34                       | 2.40                     | 0.41                                        | 0.00           | 0.0                   | 00 8           | 0.00              |                      |                                                  | A                        | 11                                             |                     | 115                                     | XIII                                 | iap_rgoais1_0_g                 |
| 14                | 1/12/2046     | 5 2046  | 1 12              | .000                         |                     | 0.41                           | 0.63                       | 2.13                     | 0.81                                        | 0.00           | 0.0                   | 00             | 0.00              |                      |                                                  |                          | VM                                             |                     | X                                       | C Charles                            | -ingv_echam4                    |
| 15                | 1/13/2046     | 5 2046  | 1 13              | 0.00                         |                     | 1.57                           | 0.68                       | 2.96                     | 0.05                                        | 0.00           | 0.4                   | 43             | 6.00 +            |                      | at l                                             | 1                        | S/                                             | /                   | 1                                       | 111                                  | inmcm3_0                        |
| 16                | 1/14/2046     | 5 2046  | 1 14              | 0.00                         |                     | 2.51                           | 1.47                       | 1.78                     | 0.06                                        | 0.01           | 0.3                   | 20             |                   |                      |                                                  | 17-                      | ×                                              | /                   |                                         | MD                                   | ipsl_cm4                        |
| 7291              | 12/15/2065    | 2065    | 12 15             | 0.00                         |                     | 2.83                           | 30.68                      | 3.11                     | 0.03                                        | 0.00           | 0.0                   | 00             | 4.00 -            |                      |                                                  | $\leftarrow$             | $\sim$                                         |                     |                                         |                                      | miroc3_2_hires_K-1              |
| 7292              | 12/16/2065    | 2065    | 12 16             | 11.40                        |                     | 0.75                           | 1.21                       | 3.06                     | 0.01                                        | 0.00           | 0.0                   | 02             |                   | - 1                  |                                                  | $\sim$                   |                                                |                     |                                         |                                      | miroc3_2_hires                  |
| 7293              | 12/17/2065    |         |                   |                              | Bi                  | as_corr_tmp Alor Setar - Micro | osoft Excel                |                          |                                             | 0.00           | 0.0                   | 00             | 2.00              |                      |                                                  |                          |                                                |                     |                                         |                                      | miroc3_2_medres                 |
| 7294              | 12/18/2065    | Hom     | Insert            | Page Layout Formulas Da      | ata Review View De  | reloper                        |                            |                          | <b>8</b> -                                  | 0.00           | 0.0                   | 00             |                   | 22                   |                                                  |                          |                                                |                     |                                         |                                      | miub_echo_g                     |
| 7204              | 12/10/2003    | × Cu    | M                 | S P 12 9 (* 11 * A A         | = = = 🐎 🗇 Wa        | Text General                   | - 1. 191                   | 2 🦮 🏞 🗊                  | Σ AutoSum · 🦅 🦓                             |                |                       |                |                   |                      | Bias_corr_tmp Alor Setar - M                     | licrosoft Excel          |                                                |                     |                                         | - 7                                  | mpi_echam5                      |
| 7208              | 12/15/2003    |         | py<br>mat Painter | I I U · Ξ · Δ· Δ·            | ■■■課課 図Merg         | pe & Center - \$ - % +         | Conditional Format         | el Insert Delete Format  | Great * Sort & Find &                       | 0.0            | Home Insert           | Page Layout    | t Formulas D      | uta Review View      | w Developer                                      |                          |                                                |                     |                                         | 0 - 0                                | -mri_cgcm2_3_2a                 |
| 7207              | 12/20/2003    | Clipboa | rd 5              | Font G                       | Alignment           | 9 Number                       | G Styles                   | Cells                    | Editing                                     |                | Copy C                | Calibri        | - 11 - A' A'      | = = *-               | Wrap Text Number                                 | - 1                      | 1 📝 📝                                          | i 🔭 🌁 🔋             | Autosum *                               | 27 83                                | Jec                             |
| 7200              | 12/21/2003    | - (u -  | ģi =              |                              |                     |                                |                            |                          |                                             | 0. N           | 🗧 🍼 Format Painter    | BIU            | • 🖽 • 💁 • 🗛 •     | <b>■</b> ■ # # #     | Merge & Center * \$ * % •                        | 10 +0 Conditi<br>Formatt | ional Format Cell<br>ing * as Table * Styles * | Insert Delete Forr  | nat 🖉 Clear *                           | Sort & Find &<br>Filter * Select *   | _                               |
| 7286              | 12/22/2003    | N26     | • 0               | Jx 1                         |                     | 1                              | <b>K N</b>                 | 0                        | P Q                                         | 0.             | Cipboard 9            |                | Font -            | Aligne               | nent 🤉 Number                                    |                          | Styles                                         | Cells               |                                         | ting                                 |                                 |
| 7299              | 12/23/2065    | Mo      | del 2 I           | Model 3 Model 4              | Model 5 Mode        | el 6 Model 7                   | Model 8 Model 9            | Model 10 M               | odel 11 Model 12                            | 0.4            | F7310 • (3            | ja ja          | AVERAGE(F3:F3     | 7307)                |                                                  |                          |                                                |                     |                                         |                                      |                                 |
| 7300              | 12/24/2065    | cccma_  | cgcm3_1           | a_cgcm3_1_ cnrm_cm3<br>t63   | csiro_mk3_0 csiro_m | ik3_5 gfdl_cm2_0               | gfdl_cm2_1 giss_aom        | giss_model_e_r iap_f     | goals1_0_g ingv_echam4                      | 0.             | F F                   | G              | н                 | I I                  | JE                                               | L                        | ii ii                                          | N                   | 0                                       | P 0_1_0                              | nj NRD_count_prj 4              |
| 7301              | 12/25/2065    |         | -1.327            | -1.788 0.035                 | 0.116               | 1.488 -0.958                   | -0.674 -0.63               | 8                        | 0.046 -0.325                                | 0.1            | here here? 0          | 1              | 0                 | 1 comp crom2 1       | cccma_cgcm3_1_cccma_cgcm3_1                      |                          | oder 4                                         | reiro mira o        | erino mità 0                            | with mild E                          |                                 |
| 7302              | 12/26/2065    | 5       | 1.655             | 2.178 5.012                  | 3.607               | 16.840 3.841                   | 9.056 1.74                 | 7                        | 33.219 1.097                                | 0. 2           |                       | #NUM           | 0.00              | 0.00                 | 163 163                                          | 0.00                     | 0.00                                           | 0.19                | 0.19                                    | 0.00                                 |                                 |
| 7303              | 12/27/2065    |         | 0.972             | 1.266 6.874<br>3.600 4.492   | 2,980               | 11.103 5.636<br>2.513 0.663    | 2.819 2.45                 | 5                        | 14.137 1.227<br>3.757 1.215                 | 0.             | #NUM!                 | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.47                | 0.47                                    | 0.00                                 |                                 |
| 7304              | 12/28/2065    | 5       | 1.537             | 1.474 0.843                  | 1.615               | 1.325 0.400                    | 0.646 1.64                 | D                        | 1.778 1.070                                 | 0.5            | #NUMI<br>#NUMI        | #NUM!<br>#NUM! | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.39                | 0.39                                    | 0.00                                 |                                 |
| 7305              | 12/29/2065    | 5       | 1.509             | 1.059 1.379<br>0.903 1.415   | 3.236               | 1.511 1.427<br>1.363 1.389     | 0.991 0.57                 | 4                        | 1.607 0.802<br>1.371 1.070                  | 0. 7           | #NUM!                 | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.18                | 0.18                                    | 0.00                                 |                                 |
| 7306              | 12/30/2065    | 5       | 1.259             | 1.267 1.240                  | 1.170               | 0.780 0.408                    | 0.565 1.23                 | 8                        | 0.811 1.264                                 | 0.             | HNUM!                 | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
| /307              | 12/31/2065    | 5       | 0.809             | 1.121 0.770<br>1.173 0.392   | -0.153              | -0.128 -0.384<br>1.714 -0.495  | -0.292 1.90<br>-0.195 0.37 | 1                        | 0.351 0.895<br>-0.768 0.677                 | 0. 1           |                       | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 10.04                                |                                 |
| 7308              |               |         | 1.375             | 0.945 0.089                  | 1.455               | 2.134 -0.812                   | -0.427 -0.55               | 4                        | -1.146 -0.199                               | <b>30201.</b>  | 2 #NUM!               | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
| 309               |               |         |                   |                              |                     |                                |                            |                          |                                             | 13             | 3 #NUMI               | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
| 310               |               |         |                   |                              |                     |                                |                            |                          |                                             | 1              | 5 #NUM!               | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.28                | 0.28                                    | 0.00                                 |                                 |
| $\leftrightarrow$ | 1 📈 0 1 cm    | 1       |                   |                              |                     |                                |                            |                          |                                             | sel_prj 0_1    | 6 #NUMI<br>7 #NUMI    | #NUM!<br>#NUM! | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.20                | 0.20                                    | 0.00                                 |                                 |
| eady              | 2             |         |                   |                              |                     |                                |                            |                          |                                             | 1              | 8 #NUM!               | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 1              | 9 #NUM1               | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 72             | 93 #NUM!              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.47                     | 0.47                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 72             | 95 #NUM!              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.38                     | 0.38                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            | -                        |                                             | 72             | 96 #NUMI              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.49                     | 0.49                                           | 0.00                | 0.00                                    | 7.60                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 72             | 98 #NUM!              | #NUM!          | 0.00              | 0.00                 | 4.68 4.68                                        | 0.35                     | 0.35                                           | 0.00                | 0.00                                    | 5.87                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 72             | 99 #NUM1              | #NUMI          | 0.00              | 0.00                 | 4.26 4.26                                        | 0.40                     | 0.40                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 73             | 01 #NUMI              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.49                     | 0.45                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 73             | 02 #NUMI<br>03 #NUMI  | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.53                     | 0.53                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 73             | 04 #NUMI              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.49                     | 0.49                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 73             | 05 #NUMI<br>08 #NUMI  | #NUM!<br>#NUM! | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               | н       | Parameter 🦯 d     | a_correct_ext / monthly must | monthly_rate 20c_ra | w 🖉 2014 content 🖉 Have Lidar  | r or 🖌 Nax Iday rank or 🖌  | ars or 🗸 par set or 🗸 Na |                                             | 73             | 07 #NUMI              | #NUM!          | 0.00              | 0.00                 | 0.00 0.00                                        | 0.00                     | 0.00                                           | 0.00                | 0.00                                    | 0.00                                 |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | 73             | u a 🖌 🖌 Parameter 🖉 d | da_correct e   | ext incontraction | ter 🖌 monthly rate - | 20c_raw 20c_correct                              | dar en Z Max 1           | lar ark er 🖌 pas                               | en / se set en /    | No. or / No. 1                          |                                      |                                 |
|                   |               |         |                   |                              |                     |                                |                            |                          |                                             | Rea            | idy 👫                 |                |                   |                      |                                                  |                          |                                                |                     | ATT (1) 100% (-                         | - 0 - E                              |                                 |



## **CCF DERIVATION -Frequency Analysis / Design Rainstorm**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mydrognomon                                                                                                                                                                            |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                | - 10             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|
| 3 Hydrogeneous Leurichter Heb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | File Edit Wew Series Hydrology Help                                                                                                                                                    | \s. @@ ≩•X                                                                                       | 1 <b>1 1 1</b>                                                                                        | 000                                                                                          | n                                                                                                           |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ccma_cgcm3_1ri_cgcm2_3_2(                                                                                                                                                              | am_an3 ccans_open3_1_63                                                                          | csiro_mk3_5 csiro_                                                                                    | nk3_0 gfd_cm2                                                                                | _1 gfd_cm2_0 is                                                                                             | _fgoals1_0_g gis                                                                                              | s_aom ingv_echan                                                                             | n4 inmon3_0 min                                                                               | roc3_2_hires_K-1 miroc1                                                                        | 3_2_hires   ips  |
| 「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1981 112.41 112.56<br>1982 90.65 133.88                                                                                                                                                | 97.33 81.71<br>138.54 97.09                                                                      | 240.50<br>361.62                                                                                      | 90.12 186<br>63.44 115                                                                       | .27 194.23<br>.46 114.36                                                                                    | 167.91<br>98.90                                                                                               | 125.49 93.0<br>98.21 104.7                                                                   | 09 150.43<br>77 107.49                                                                        | 66.05<br>84.07                                                                                 | 66.06            |
| Optime         112.44         112.56         97.33         61.76         246.20         194.21         194.24         157.49         92.09         123.45         66.06         66.06         14           Optime         0.056         13.00         136.54         115.66         114.36         114.36         114.36         104.77         10.477         10.46         64.06         64.09         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1983 135.75 129.90<br>1984 05.49 02.92                                                                                                                                                 | 131.96 131.9<br>58.09 121.5                                                                      | 74.21<br>107.28                                                                                       | 97.39 137                                                                                    | .30 107.00<br>.78 131.54                                                                                    | 137.97<br>83.23                                                                                               | 107.27 96.<br>94.51 69.                                                                      | 14 116.74<br>19 90.01                                                                         | 161.74<br>102.24                                                                               | 161.75<br>102.25 |
| 1980         135.78         125.89         113.66         133.76         174.21         114.20         92.30         107.00         117.77         107.22         96.44         116.74         161.75         107.76           1984         05.49         05.49         05.22         95.40         107.70         117.70         117.44         103.27         96.44         116.74         161.75         107.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1985 85.05 92.88<br>1986 119.85 74.81                                                                                                                                                  | 77.91 123.90<br>147.94 93.91                                                                     | 95.42<br>99.32                                                                                        | 147.49 04<br>99.11 86                                                                        | .71 97.26<br>.33 111.35                                                                                     | 83.26<br>88.47                                                                                                | 132.24 94.<br>132.20 102.                                                                    | 73 117.50<br>37 101.92                                                                        | 121.64<br>106.21                                                                               | 121.65<br>106.23 |
| Image: No.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1987 78.01 92.56<br>1988 113.05 125.59                                                                                                                                                 | 131.85 98.7<br>176.36 91.7                                                                       | 144.43<br>265.42                                                                                      | 129.49 91                                                                                    | .14 90.16                                                                                                   | 81.50                                                                                                         | 180.76 99.                                                                                   | 71 115.35                                                                                     | 97.66                                                                                          | 97.67            |
| 1996         115.85         74.81         147.57         99.92         99.11         000.21         113.00         00.07         126.20         110.02         100.07         100.02         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00         000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1989 105.89 71.83                                                                                                                                                                      | 190.00 95.3                                                                                      | 109.49                                                                                                | 152.70 83                                                                                    | 12 104.63                                                                                                   | 252.11                                                                                                        | 105.87 46.1                                                                                  | 97 119.65                                                                                     | 119.24                                                                                         | 119.25           |
| 1986         11.18.6         125.59         186.36         97.75         236.44         202.40         11.86.4         11.02.2         21.86.95         123.19         90.10         57.59         100.57         100.57         6           156.50         7.10.4         140.00         63.20         103.12         148.46         153.21         19.46         11.92.5         11.94.5         11.92.5         11.95.5         11.94.5         11.92.5         11.95.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5         11.94.5 <th>1990 160.88 1429.19<br/>1991 103.63 184.91</th> <th>148.41 170.0<br/>135.74 122.4</th> <th>162.40</th> <th>173.53 ou<br/>105.42 130</th> <th>105 97.01</th> <th>108.94</th> <th>119.07 191.0<br/>226.83 134.0</th> <th>67 121.81<br/>63 98.75</th> <th>35.54</th> <th>95.55</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1990 160.88 1429.19<br>1991 103.63 184.91                                                                                                                                              | 148.41 170.0<br>135.74 122.4                                                                     | 162.40                                                                                                | 173.53 ou<br>105.42 130                                                                      | 105 97.01                                                                                                   | 108.94                                                                                                        | 119.07 191.0<br>226.83 134.0                                                                 | 67 121.81<br>63 98.75                                                                         | 35.54                                                                                          | 95.55            |
| 1990 190,8 125.15 194.41 175.54 192,40 175.53 00.61 105.45 00.00 119.07 121.81 99.54 95.55 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1992 97.83 97.91<br>1993 155.56 183.28                                                                                                                                                 | 116.17 187.03                                                                                    | 85.06                                                                                                 | 85.67 96                                                                                     | .90 94.08                                                                                                   | 146.69                                                                                                        | 147.32 172.0                                                                                 | 102.81                                                                                        | 134.30                                                                                         | 134.31<br>168.98 |
| 1991         100,33         104.94         125.74         142.74         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05         199.05 <th>1994 167.10 119.59<br/>1995 132.28 129.95</th> <th>File Edit View Options</th> <th>Porecasts Confidence</th> <th>Tests</th> <th></th> <th></th> <th>1250 02</th> <th>146.51</th> <th>106.47<br/>76.21</th> <th>106.48<br/>76.21</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1994 167.10 119.59<br>1995 132.28 129.95                                                                                                                                               | File Edit View Options                                                                           | Porecasts Confidence                                                                                  | Tests                                                                                        |                                                                                                             |                                                                                                               | 1250 02                                                                                      | 146.51                                                                                        | 106.47<br>76.21                                                                                | 106.48<br>76.21  |
| 1990         155.6         163.20         42.50         94.96         106.49         111.26         166.66         124.55         93.44         65.50         102.81         166.69         16           1994         167.10         157.10         157.00         157.44         65.50         102.81         166.69         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1996 85.13 150.05<br>1997 141.21 136.50                                                                                                                                                | All data - T(Max)= 100.000                                                                       | gram - Density function<br>Value                                                                      | Parameter evalu                                                                              | uation - Forecasts                                                                                          | A Us                                                                                                          | lect distributions to de                                                                     | splay. 119.78<br>07 128.90                                                                    | 127.65<br>143.24                                                                               | 127.66<br>143.25 |
| 1996         120.26         127.06         Image: Mathematic sector se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1998 66.64 163.13<br>1999 198.22 169.69                                                                                                                                                | Normal<br>Normal (L-Moments)                                                                     | 199.052<br>194.493                                                                                    |                                                                                              |                                                                                                             | 🔳 dra                                                                                                         | sg to select many at o                                                                       | nce: 84.19<br>117.88                                                                          | 104.19<br>129.43                                                                               | 104.19<br>129.44 |
| 1977         111.1         135.9         125.0         Derbutin functions         Farmeter evolution. Forecasts         42.8         141.25         16           mm         res         selet dirichtories to deptin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000 80.21 133.81                                                                                                                                                                      | LogNormal<br>Galton                                                                              | 222.215                                                                                               |                                                                                              |                                                                                                             | G                                                                                                             | r2-Max<br>umbel Min<br>leibull                                                               | 227.32                                                                                        | 115.86                                                                                         | 115.86           |
| 1990         60.44         10:13         10:37           1999         199.22         10:64         10:13         10:37           x         Orrgoden         — Likenetic GDV Max         Use after addo addings of 10:27         10:44         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        | Exponential<br>Exponential (Lutermente)                                                          | 243.969                                                                                               |                                                                                              |                                                                                                             | GGR                                                                                                           | EV Max<br>EV Min<br>webo                                                                     |                                                                                               |                                                                                                |                  |
| 2000 00.21 133.81 137.42 Boolefare probably (3): role form distributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        | Gamma                                                                                            | 214.080                                                                                               |                                                                                              |                                                                                                             | 6<br>6                                                                                                        | Moments Normal<br>Moments Exponential                                                        |                                                                                               |                                                                                                |                  |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100 |                                                                                                                                                                                        | Pearson III<br>Log Pearson III                                                                   | 234.767<br>245.046                                                                                    |                                                                                              |                                                                                                             | 500                                                                                                           | Moments EV1-Max<br>Moments EV2-Max<br>Moments EV1-Min                                        |                                                                                               |                                                                                                |                  |
| 1,000 Participant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        | EV1-Max (Gumbel)<br>EV2-Max                                                                      | 227.557<br>246.124                                                                                    |                                                                                              |                                                                                                             | し.<br>開始<br>1-                                                                                                | Noments EV3-Min<br>Moments GEV Max<br>Moments GEV Min                                        | -                                                                                             |                                                                                                |                  |
| - Converts permanant<br>- Converts permanant<br>- Converts permanant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        | EV1-Min (Gunbel)<br>EV3-Min (Webull)                                                             | 174.995                                                                                               |                                                                                              |                                                                                                             | L G                                                                                                           | Moments Pareto<br>EV-Max (k spec.)                                                           |                                                                                               |                                                                                                |                  |
| Unrent Dr Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        | GEV-Max<br>GEV-Min                                                                               | 234.007                                                                                               |                                                                                              |                                                                                                             | 0<br>1<br>1                                                                                                   | EV-Min (Kispec.)<br>Moments GEV-Max (k.<br>Moments GEV-Min (k.                               | sc.<br>spile                                                                                  |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        | Pareto                                                                                           | 235.176                                                                                               |                                                                                              |                                                                                                             | C                                                                                                             | Reset                                                                                        |                                                                                               |                                                                                                |                  |
| E Concerta Faceto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | GEV-Min (L-Moments)                                                                              | 239.910                                                                                               |                                                                                              |                                                                                                             | E                                                                                                             | Webul Points                                                                                 |                                                                                               |                                                                                                |                  |
| uthermotions of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        | EV2-Max (L-Monments)                                                                             | s) 265.531                                                                                            |                                                                                              |                                                                                                             | E C                                                                                                           | Blom Points<br>Cunnane Points                                                                |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        | EV1-Min (Gumbel, L-Moments<br>EV3-Min (Weibull, L-Moments                                        | ) 174.147<br>) 189.846                                                                                |                                                                                              |                                                                                                             |                                                                                                               | Gringorten Points                                                                            |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        | Pareto (L-Homents)                                                                               | 1234.798                                                                                              | 1                                                                                            |                                                                                                             |                                                                                                               | Logarithmic                                                                                  |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
| Al data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       | 、 ト                                                                                          |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       | $\mathbf{\nabla}$                                                                            |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                                                                                  |                                                                                                       |                                                                                              |                                                                                                             |                                                                                                               |                                                                                              |                                                                                               |                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        | _                                                                                                | -                                                                                                     | -                                                                                            | -                                                                                                           |                                                                                                               | _                                                                                            |                                                                                               |                                                                                                |                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GEV-Max (L-Moments)                                                                                                                                                                    | _                                                                                                | _                                                                                                     | -                                                                                            | _                                                                                                           |                                                                                                               | -                                                                                            |                                                                                               |                                                                                                | _                |
| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GEV-Max (L-Moments)                                                                                                                                                                    |                                                                                                  | -                                                                                                     | -                                                                                            | -                                                                                                           |                                                                                                               | _                                                                                            |                                                                                               |                                                                                                |                  |
| 1<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEV-Max (L-Moments)<br>Model                                                                                                                                                           |                                                                                                  | -                                                                                                     | -                                                                                            | 2046-20                                                                                                     | 055                                                                                                           | -                                                                                            | 100                                                                                           |                                                                                                |                  |
| 1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEV-Max (L-Moments)<br>Model                                                                                                                                                           | 2                                                                                                | 5                                                                                                     | 10                                                                                           | -<br>2046-20<br>20                                                                                          | 25                                                                                                            | 50                                                                                           | 100                                                                                           | 1000                                                                                           |                  |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEV-Max (L-Moments)<br>Model                                                                                                                                                           | 2<br>95.74                                                                                       | 5<br>114.54                                                                                           | <b>10</b><br>121.95                                                                          | 2046-20<br>20<br>126.73                                                                                     | 055<br>25<br>127.89                                                                                           | 50<br>130.70                                                                                 | <b>100</b><br>132.61                                                                          | 1000<br>135.57                                                                                 |                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63                                                                                                                     | 2<br>95.74<br>89.06                                                                              | 5<br>114.54<br>131.96                                                                                 | 10<br>121.95<br>162.37                                                                       | 2046-20<br>20<br>126.73<br>193.13                                                                           | 055<br>25<br>127.89<br>203.23                                                                                 | <b>50</b><br>130.70<br>235.42                                                                | <b>100</b><br>132.61<br>269.03                                                                | 1000<br>135.57<br>393.04                                                                       |                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63<br>cnrm_cm3                                                                                                         | 2<br>95.74<br>89.06<br>97.58                                                                     | 5<br>114.54<br>131.96<br>113.27                                                                       | 10<br>121.95<br>162.37<br>124.71                                                             | 2046-20<br>20<br>126.73<br>193.13<br>136.53                                                                 | 055<br>25<br>127.89<br>203.23<br>140.47                                                                       | <b>50</b><br>130.70<br>235.42<br>153.20                                                      | 100<br>132.61<br>269.03<br>166.77                                                             | 1000<br>135.57<br>393.04<br>219.17                                                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_tG3<br>cnrm_cm3<br>csiro_mk3_0                                                                                          | 2<br>95.74<br>89.06<br>97.58<br>97.58                                                            | 5<br>114.54<br>131.96<br>113.27<br>113.27                                                             | -<br>10<br>121.95<br>162.37<br>124.71<br>124.71                                              | 2046-20<br>20<br>126.73<br>193.13<br>136.53<br>136.53                                                       | 055<br>25<br>127.89<br>203.23<br>140.47<br>140.47                                                             | <b>50</b><br>130.70<br>235.42<br>153.20<br>153.20                                            | <b>100</b><br>132.61<br>269.03<br>166.77<br>166.77                                            | <b>1000</b><br>135.57<br>393.04<br>219.17<br>219.17                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63<br>cnrm_cm3<br>csiro_mk3_0<br>csiro_mk3_5                                                                           | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>112.92                                                  | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34                                                   | 10<br>121.95<br>162.37<br>124.71<br>124.71<br>130.26                                         | 2046-20<br>20<br>126.73<br>193.13<br>136.53<br>136.53<br>136.93                                             | 055<br>25<br>127.89<br>203.23<br>140.47<br>140.47<br>139.05                                                   | 50<br>130.70<br>235.42<br>153.20<br>153.20<br>145.60                                         | 100<br>132.61<br>269.03<br>166.77<br>166.77<br>152.11                                         | <b>1000</b><br>135.57<br>393.04<br>219.17<br>219.17<br>173.79                                  |                  |
| CC FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63<br>cnrm_cm3<br>csiro_mk3_0<br>csiro_mk3_5<br>gfdl_cm2_0                                                             | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>112.92<br>86.05                                         | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34<br>103.21                                         | 10<br>121.95<br>162.37<br>124.71<br>124.71<br>130.26<br>116.67                               | 2046-20<br>126.73<br>193.13<br>136.53<br>136.53<br>136.93<br>131.41                                         | 25<br>127.89<br>203.23<br>140.47<br>140.47<br>139.05<br>136.50                                                | <b>50</b><br>130.70<br>235.42<br>153.20<br>153.20<br>145.60<br>153.57                        | <b>100</b><br>132.61<br>269.03<br>166.77<br>166.77<br>152.11<br>172.80                        | 1000<br>135.57<br>393.04<br>219.17<br>219.17<br>173.79<br>256.67                               |                  |
| CC FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63<br>cnrm_cm3<br>csiro_mk3_0<br>csiro_mk3_5<br>gfdl_cm2_0<br>gfdl_cm2_1                                               | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>97.58<br>112.92<br>86.05<br>108.71                      | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34<br>103.21<br>132.36                               | 10<br>121.95<br>162.37<br>124.71<br>124.71<br>130.26<br>116.67<br>140.20                     | 2046-20<br>126.73<br>193.13<br>136.53<br>136.93<br>131.41<br>144.63                                         | 25<br>127.89<br>203.23<br>140.47<br>140.47<br>139.05<br>136.50<br>145.62                                      | <b>50</b><br>130.70<br>235.42<br>153.20<br>153.20<br>145.60<br>153.57<br>147.82              | 100<br>132.61<br>269.03<br>166.77<br>152.11<br>172.80<br>149.15                               | 1000<br>135.57<br>393.04<br>219.17<br>219.17<br>173.79<br>256.67<br>150.79                     |                  |
| CC FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_tG3<br>cmm_cm3<br>csiro_mk3_0<br>csiro_mk3_0<br>csiro_mk3_5<br>gfdl_cm2_0<br>gfdl_cm2_1<br>giss_aom                     | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>97.58<br>112.92<br>86.05<br>108.71<br>112.92            | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34<br>103.21<br>132.36<br>123.34                     | 10<br>121.95<br>162.37<br>124.71<br>124.71<br>130.26<br>116.67<br>140.20<br>130.26           | 2046-24<br>20<br>126.73<br>136.53<br>136.53<br>136.93<br>131.41<br>144.63<br>136.93                         | 25<br>25<br>203.23<br>140.47<br>140.47<br>140.47<br>139.05<br>136.50<br>145.62<br>139.05                      | 50<br>130.70<br>235.42<br>153.20<br>153.20<br>153.57<br>145.60<br>153.57<br>147.82<br>145.60 | 100<br>132.61<br>269.03<br>166.77<br>152.11<br>172.80<br>149.15<br>152.11                     | 1000<br>135.57<br>393.04<br>219.17<br>219.17<br>173.79<br>256.67<br>150.79<br>173.79           |                  |
| CC FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>cccma_cgcm3_1_t63<br>cnrm_cm3<br>csiro_mk3_0<br>csiro_mk3_0<br>gfdl_cm2_0<br>gfdl_cm2_1<br>giss_aom<br>iap_fgoals1_0_g                | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>112.92<br>86.05<br>108.71<br>112.92<br>111.81           | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34<br>103.21<br>132.36<br>123.34<br>136.65           | 10<br>121.95<br>162.37<br>124.71<br>124.71<br>130.26<br>116.67<br>140.20<br>130.26<br>150.64 | 2046-20<br>126.73<br>193.13<br>136.53<br>136.53<br>136.93<br>131.41<br>144.63<br>136.93<br>162.47           | 25<br>25<br>127.89<br>203.23<br>140.47<br>140.47<br>139.05<br>136.50<br>145.62<br>139.05<br>165.92            | 50<br>130.70<br>235.42<br>153.20<br>153.20<br>145.60<br>153.57<br>147.82<br>145.60<br>175.76 | 100<br>132.61<br>269.03<br>166.77<br>166.77<br>152.11<br>172.80<br>149.15<br>152.11<br>184.42 | 1000<br>135.57<br>393.04<br>219.17<br>219.17<br>173.79<br>256.67<br>150.79<br>173.79<br>206.68 |                  |
| CC FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEV-Max (L-Moments)<br>Model<br>cccma_cgcm3_1<br>ccrma_cgcm3_1_t63<br>cnrm_cm3<br>csiro_mk3_0<br>csiro_mk3_5<br>gfdl_cm2_0<br>gfdl_cm2_1<br>giss_aom<br>iap_fgoals1_0_g<br>ingv_echam4 | 2<br>95.74<br>89.06<br>97.58<br>97.58<br>112.92<br>86.05<br>108.71<br>112.92<br>111.81<br>113.08 | 5<br>114.54<br>131.96<br>113.27<br>113.27<br>123.34<br>103.21<br>132.36<br>123.34<br>136.65<br>166.52 | 10<br>121.95<br>162.37<br>124.71<br>130.26<br>116.67<br>140.20<br>130.26<br>150.64<br>205.39 | 2046-20<br>126.73<br>193.13<br>136.53<br>136.53<br>136.93<br>131.41<br>144.63<br>136.93<br>162.47<br>245.53 | 255<br>25<br>127.89<br>203.23<br>140.47<br>140.47<br>139.05<br>136.50<br>145.62<br>139.05<br>165.92<br>258.87 | 50<br>130.70<br>235.42<br>153.20<br>145.60<br>153.57<br>147.82<br>145.60<br>175.76<br>301.96 | 100<br>132.61<br>269.03<br>166.77<br>152.11<br>172.80<br>149.15<br>152.11<br>184.42<br>347.84 | 1000<br>135.57<br>393.04<br>219.17<br>173.79<br>256.67<br>150.79<br>173.79<br>206.68<br>206.68 |                  |

16 ipsl\_cm4

17 miroc3 2 hires K-1

18 miroc3\_2\_hires

20 miub\_echo\_g

22 mri\_cgcm2\_3\_2a

21 mpi echam5

19 miroc3\_2\_medres

117.63

135.06

135.07

108.74

121.13

108.11

114.33

138.42 157.03

241.30

241.30

182.75

193.18

138.20

152.85

194.19

194.20

148.23

161.95

127.00

139.84

179.68

293.54

293.55

223.95

226.75

148.06

163.04

188.04

311.73

311.73

238.98

238.20

151.01

165.88

218.04

373.20

373.20

292.25

276.13

159.65

173.56



255.40

443.28

443.28

357.40

318.08

167.54

179.86

460.50

757.38

757.35

700.20

493.78

189.50

193.82







(with climate change scenario)

# 1-day Future IDF Parameter ( $\lambda_{BH}$ ) corresponding to Return Period in Kedah state

|       |     |            |                   | 1-day λ <sub>BH</sub> |       |        |        |        |        |        |        |  |  |  |
|-------|-----|------------|-------------------|-----------------------|-------|--------|--------|--------|--------|--------|--------|--|--|--|
| State | No. | Station ID | Station Name      | Return Period, T      |       |        |        |        |        |        |        |  |  |  |
|       |     |            |                   | 2                     | 5     | 10     | 20     | 25     | 50     | 100    | 200    |  |  |  |
|       | 1   | 6207032    | Ampang Pedu       | 69.47                 | 71.27 | 72.22  | 73.00  | 73.22  | 73.86  | 74.41  | 74.90  |  |  |  |
|       | 2   | 5507076    | Bt.27, Jln Baling | 58.55                 | 60.64 | 61.84  | 62.86  | 63.16  | 64.04  | 64.84  | 65.56  |  |  |  |
|       | 3   | 5808001    | Bt.61, Jln Baling | 51.41                 | 53.74 | 55.00  | 56.06  | 56.37  | 57.24  | 58.02  | 58.71  |  |  |  |
|       | 4   | 5704055    | Kedah Peak        | 92.90                 | 98.19 | 100.91 | 103.08 | 103.70 | 105.44 | 106.93 | 108.24 |  |  |  |
| Kedah | 5   | 5806066    | Klinik Jeniang    | 68.59                 | 69.98 | 70.71  | 71.30  | 71.47  | 71.95  | 72.37  | 72.73  |  |  |  |
|       | 6   | 6108001    | Komp Rmh Muda     | 60.25                 | 64.83 | 67.41  | 69.61  | 70.27  | 72.14  | 73.83  | 75.37  |  |  |  |
|       | 7   | 6206035    | Kuala Nerang      | 53.34                 | 58.78 | 61.68  | 64.07  | 64.76  | 66.71  | 68.42  | 69.94  |  |  |  |
|       | 8   | 6306031    | Padang Sanai      | 65.37                 | 65.71 | 66.84  | 68.48  | 69.10  | 71.32  | 73.94  | 76.97  |  |  |  |
|       | 9   | 6103047    | JPS Alor Setar    | 69.44                 | 75.61 | 79.04  | 81.94  | 82.79  | 85.23  | 87.41  | 89.38  |  |  |  |

# **IDF** Parameters

| State | Station ID | Station None         | Derived Parameters |        |       |       |       |  |  |  |  |
|-------|------------|----------------------|--------------------|--------|-------|-------|-------|--|--|--|--|
| State | Station ID | Station Name         | λ                  | λвн    | к     | θ     | η     |  |  |  |  |
|       | 5507076    | Bt. 27, Jalan Baling | 52.40              | 64.84  | 0.172 | 0.104 | 0.788 |  |  |  |  |
|       | 5704055    | Kedah Peak           | 81.58              | 106.93 | 0.200 | 0.437 | 0.719 |  |  |  |  |
|       | 5806066    | Klinik Jeniang       | 59.79              | 72.37  | 0.165 | 0.203 | 0.791 |  |  |  |  |
|       | 5808001    | Bt. 61, Jalan Baling | 47.50              | 58.02  | 0.183 | 0.079 | 0.752 |  |  |  |  |
| Kedah | 6103047    | Setor JPS Alor Setar | 64.83              | 87.41  | 0.168 | 0.346 | 0.800 |  |  |  |  |
|       | 6108001    | Kompleks Rumah Muda  | 52.34              | 73.83  | 0.173 | 0.120 | 0.792 |  |  |  |  |
|       | 6206035    | Kuala Nerang         | 54.85              | 68.42  | 0.174 | 0.250 | 0.810 |  |  |  |  |
|       | 6207032    | Ampang Padu          | 66.10              | 74.41  | 0.177 | 0.284 | 0.842 |  |  |  |  |
|       | 6306031    | Padang Sanai         | 60.33              | 73.94  | 0.193 | 0.249 | 0.829 |  |  |  |  |



## **Application: Kedah River Basin**



22



#### ANALYSIS OUTCOME DESIGNED FLOOD PEAKS – KEDAH RIVER BASIN

|          |                 |                                      |                                     | Peak Disch<br>100-yea                                                                      | arges (Q <sub>p</sub> )<br>ars ARI                                                      |                                                        |  |
|----------|-----------------|--------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| ltem     | Time<br>Horizon | Climate<br>Change<br>Factor<br>(CCF) | 1-Day<br>Design<br>Rainfall<br>(mm) | Climate<br>Change<br>Scenario<br>Flood<br>Magnitude,<br>Q <sub>p</sub> (m <sup>3</sup> /s) | Climate<br>Change<br>Scenario<br>Flood<br>Magnitude<br>Increment<br>(m <sup>3</sup> /s) | Percentage<br>Increase of<br>Flood<br>Magnitude<br>(%) |  |
| Baseline | -               | -                                    | 241                                 | 2048                                                                                       | -                                                                                       | -                                                      |  |
| 1        | 2020            | 1.05                                 | 245                                 | 2111                                                                                       | 63                                                                                      | 3.1                                                    |  |
| 2        | 2030            | 1.09                                 | 257                                 | 2268                                                                                       | 220                                                                                     | 10.7                                                   |  |
| 3        | 2040            | 1.14                                 | 268                                 | 2430                                                                                       | 382                                                                                     | 18.7                                                   |  |
| 4        | 2050            | 1.19                                 | 280                                 | 2602                                                                                       | 554                                                                                     | 27.1                                                   |  |
| 5        | 2060            | 1.25                                 | 293                                 | 2785                                                                                       | 737                                                                                     | 36.0                                                   |  |
|          |                 |                                      |                                     |                                                                                            |                                                                                         |                                                        |  |





**Generated Flood Extent Map** Location: Sg Kedah Landuse: Future Rainfall: 2060, 100y ARI

| Area for flood depth (km <sup>2</sup> ) |                                |                                                                                                           |                                                                                                                     |  |  |  |  |  |  |
|-----------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0.01 -                                  | 0.5 -                          | \1.2 m                                                                                                    | Sum                                                                                                                 |  |  |  |  |  |  |
| 0.5 m                                   | 1.2 m                          | >1.2 III                                                                                                  | Juin                                                                                                                |  |  |  |  |  |  |
| 50.50                                   | 41.55                          | 35.57                                                                                                     | 127.62                                                                                                              |  |  |  |  |  |  |
|                                         | Ar<br>0.01 -<br>0.5 m<br>50.50 | Area for floor           0.01 -         0.5 -           0.5 m         1.2 m           50.50         41.55 | Area for flood depth (km           0.01 -         0.5 -           0.5 m         1.2 m           50.50         41.55 |  |  |  |  |  |  |

Legend River Projected Flood Depth (m) 0.0 - 0.5 0.5 - 1.2 >1.2

# CONCLUSION

- Current practice of strengthening and empowering the water related sectors through integration and sustainability approach strategies and policies are required to be improved.
- Water system designs, operations and managements to be reviewed and re-established – incorporate CCF in strategic planning and development.
- Impacts of climate change on the country's water related hazards – projected and quantified through CCF.
- CCF determine appropriate adaptation options, measures, and actions.

AHRIN