**Capabilities of Data Integration and Prediction** 

-Some implications to the AWCI Next Stage-

#### Kazuhiko FUKAMI

International Centre for Water Hazard and Risk Management under the auspices of UNESCO (UNESCO-ICHARM), Public Works Research Institute (PWRI), Japan





#### **Integrated Flood Analysis System (IFAS)**

Flood runoff analysis system with satellite-based rainfall & global GIS information



#### Satellite-based rainfall data

- There is no necessity for installation and maintenance of a rain gauge or transmission equipment.
  - Ground-based rainfall data are indispensable to get highly-accurate flood runoff analysis and forecast.
- Almost the worldwide coverage and a consistent accuracy are obtained.
- Resolution (time and space) and observation accuracy are low compared with properly-distributed ground-based rainfall data.

| Product name           | 3B42RT                                                | CMORPH                                                | GSMaP_NRT                                                               | Clobal Rainfall Map     In Near Real lime     Supervise     Last up date 2007/bits/01 001562 UTG                                                                                                                                                                                                                                                             |
|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Developer and provider | NASA/GSFC                                             | NOAA/CPC                                              | JAXA/EORC                                                               | Date:         2007         / Hov         / 30         1940-1959         UTC         Salmit           Lifetime         Differing         Pre         Latent         >> Next         Differing         Upper Salmit                                                                                                                                            |
| Coverage               |                                                       | N60° - S60°                                           |                                                                         |                                                                                                                                                                                                                                                                                                                                                              |
| Resolution             | 0.25°                                                 | 0.25°                                                 | 0.1°                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| Resolution time        | 3 hours                                               | 3 hours                                               | 1 hour                                                                  | Kum         0.1         0.5         1.0         2.0         3.0         5.0         10.0         15.0         20.0         25.0         30.0         (mm/m)           We offer hourly global rainfall maps in near real time (about four hours after observation) using the combined MW-IR algorithm with TIRIM TML Acua AMSR-E, DMSP SSM/I and GEO IR data. |
| Time lag               | 10 hours                                              | 15 hours                                              | 4 hours                                                                 | This system was developed based on activities of the JST-OREST <u>GisMaP (Global Satellite</u><br><u>Mapping of Precipitation)</u> project.<br>Desoription<br>Variable : Rainfall rate (mm/hr)                                                                                                                                                               |
| Coordinate system      |                                                       | WGS                                                   |                                                                         | Domain     :     Global (60N - 60S)       Grid resolution     :     0.1 degree let/lon       Temporal resolution     :     1 hour                                                                                                                                                                                                                            |
| Historical data        | Dec 1997-                                             | Dec 2002-                                             | Dec. 2007~                                                              | GSMaP nRT                                                                                                                                                                                                                                                                                                                                                    |
| Sensors                | TRMM/TMI<br>Aqua/AMSR-E<br>AMSU-B<br>DMSP/SSM/I<br>IR | Aqua/AMSR-E<br>AMSU-B<br>DMSP/SSM/I<br>TRMM/TMI<br>IR | TRMM/TMI<br>Aqua/AMSR-E<br>ADEOS- II /<br>AMSR<br>SSM/I<br>IR<br>AMSU-B | http://sharaku.eoro<br>.jaxa.jp/GSMaP/in<br>dex.htm                                                                                                                                                                                                                                                                                                          |

# Algorithm for self-correction of satellite-based rainfall data without any ground-based rainfall



#### Main features of IFAS:

#### Not only ground-based but also <u>satellite-based</u> rainfall data area applicable

Distributed-parameter flood runoff model creation using global GIS data

With limited historical / real-time hydrological databases in poorly-gauged rivers

All-in-one package for GIS data analyses

Free download for the executable program from ICHARM-IFAS website

http://www.icharm.pwri.go.jp/index.html



Prompt and efficient implementation of flood analysis and forecasting system even in poorly-gauged rivers

and

step-by-step improvement of accuracy

with the enhancement of in-situ hydrological observational network



#### Interface display

Main display



Edit display of rainfall data

#### Setting display of parameter





# <figure>

#### Difference of frequency of Microwave (MWR) observation





#### Accuracy of rainfall distribution depends on the frequency of MWR observations

#### (& accuracy of IR-based motion vectors)

Ozawa et al (2010)

- ← Image of microwave observation
- MWR obs. is once a few hours on average, but not always guaranteed.
- -During no MWR period, rainfall field is transferred by IRbased motion vector.



#### **Global Precipitation Measurement (GPM)**

#### Current Observation System:

TRMM and other orbital Satellites, and 5 Geostationary Satellites





#### Comparison between satellite-based inundation extent and inundation simulations with another ICHARM's Rainfall-Runoff-Inundation (RRI) Model for Pakistan flood, August 2010



Runoff-inundation simulation can **interpolate** <u>missing</u> **satellite-based information** on flood inundation area caused by flash flood.



#### IFAS-based flood management in ADB TA-7276-REG

- Implementing Early Warning system based on IFAS to Bengawan Solo river basin, Indonesia
  - \* Implementing Early Warning system

\* Capacity Development

- Community Based Disaster Risk Management project in Pacal river basin
  - \* Creating Flood Hazard Map
  - \* Evacuation drill with alert by rainfall information and IFAS simulation





Flood in Dec.2007



#### Application to community-Based Disaster Risk Management along the Pacal River, a tributary to the Solo River, Indonesia

Preparation: Creating Flood Hazard Map and sharing role and responsibility in case of emergency

Flood forecasting and warning : <u>Alert is</u> <u>disseminated from river management</u> <u>authorities through SMS based on with IFAS</u> <u>simulation or rainfall monitoring</u>

Decision making: Community leader receives alert message and decides to evacuate

Order/Advice: Evacuate Order/Advice for the community people is announced by the Community leader

Evacuation of people in flooding risk area



#### IFAS installation to Bengawan Solo rive

- Neither raw satellite-based rainfall data (GSMaP / 3B42RT) and ICHARM's standard self-corrected GSMaP cannot reproduce the biggest flood event at the Solo River in December, 2007 very well.
- At the first phase, ground-based rainfall data will be input to IFAS. Due to the limited historical database for the verification, further validations will be conducted with future floods.
- ICHARM will make any correction method for satellite-based rainfall data with ground-based observation and/or numerical weather simulation.







Assessment of the impact of climate change on flood disaster risk and its reduction measures over the globe and specific vulnerable areas



Project Period: 2007 Apr. - 2012 Mar.

#### Effect of climate change on agricultural (rice) damage induced by flood <sub>Nakasu et al. (2011)</sub>



Wet season rice in rain-fed paddy fields has high risk affected by the chage of rainfall and floods.

(MRC: FMMP data, 2010年)

Green: Rain-fed paddy field Yellow: Flood-fed paddy field

#### Methodology to identify risk for rice production





# Variation of the date that the cumulative rainfall from the beginning of a year reaches 500 mm

240

|                                                                              |         |      | <b>D</b> |      |               |                              |                |
|------------------------------------------------------------------------------|---------|------|----------|------|---------------|------------------------------|----------------|
|                                                                              | Average | S.D. | Range    | 22() |               |                              |                |
| Present<br>(1980-2004)                                                       | 198th   | 20.1 | 73 days  | 2004 |               |                              |                |
| Near future<br>(2015-2039)                                                   | 196th   | 22.3 | 79 days  | 150  |               |                              |                |
| Future<br>(2075-2099)                                                        | 187th   | 26.1 | 90 days  | 142  | Present<br>Na | NurFinurs<br>akasu et al. (2 | Դանու<br>2011) |
| $\rightarrow$ The date reaching 500mm may become earlier and more scattered. |         |      |          |      |               |                              |                |

Variation of river discharge

Based on MRI-AGCM3.1S and BTOP model



BTOP-simulation low flow is bigger than the observed for around 10,000m<sup>3</sup>/s.
BTOP-simulation peak flood flow is also bigger for around 10,000m<sup>3</sup>/s.
The recession of flood simulation is slower than the observed.

Nakasu et al. (2011)

River flow discharge at Kompong Cham simulated with BTOP model



### Bias correction of BTOP runoff simulation



Present 40 000 30 000 20 000 10 000 50 100 150 200 250 300 350 0 50 000 Near Future 40 000 30 000 20 000 10 000 50 100 150 200 250 300 350 0 50 000 Future 40 000 30 000 20 000 10 000

Nakasu et al. (2011)

망

50

100

150

200

250

300

350

## Variation of the date occurring annual maximum river discharge (before correction/bias-corrected)

| Period      | <b>Mean Annual</b><br><b>Max Q</b><br>[m <sup>3</sup> /s] | Mean Date of<br>Annual Max Q | S.D. Date of<br>Annual Max Q |
|-------------|-----------------------------------------------------------|------------------------------|------------------------------|
| Present     | 57600                                                     | 284.5th                      | 10.2 days                    |
| (1980-2004) | <mark>42464</mark>                                        | 254.5th                      | 8.2 days                     |
| Near future | 59830                                                     | 285.5th                      | 10.6 days                    |
| (2015-2039) | 44523                                                     | 253.2th                      | <mark>8.5 days</mark>        |
| Future      | 63160                                                     | 284.6th                      | 16.0 days                    |
| (2075-2099) | 47119                                                     | 253.8th                      | 10.4 days                    |

Nakasu et al. (2011)

→ Annual maximum discharge may be increased.
 Its occurrence day may not be changed on average,
 but its variation may be enlarged.

#### **Calculation of damage of rice production**



#### **Evaluation of rice-production damage in the Kompong Cham**

|                            | Mean annual damage | Standard deviation of annual damage |
|----------------------------|--------------------|-------------------------------------|
| Present<br>(1980-2004)     | 11.1 M US \$       | 15.1 M US \$                        |
| Near future<br>(2015-2039) | 20.7 M US \$       | 18.6 M US \$                        |
| Future<br>(2075-2099)      | 39.7 M US \$       | 39.7 M US \$<br>(2.6 times!)        |

Damage estimation was based on the price of the export of rice from Thailand in 2010. The variation of price in the future was not considered.
Ref. GDP of Cambodia: 10.8 billionUS\$ (2009, IMF)

Nakasu et al. (2011)



#### Socio-economic change outlook (SRES Scenario A1 downscaled data by <u>SEDAC</u>)

| Popula | ation |
|--------|-------|
|--------|-------|

| 2010(A1)        | 2050(A2)   | 2100(A3)     |
|-----------------|------------|--------------|
| 16,012,549      | 23,823,884 | 12,403,112   |
| Ratio of change | A2/A1=1.49 | A3/A1 = 0.77 |

GDP

| 2010(B1)         | 2050(B2)       | 2100(вз)        |
|------------------|----------------|-----------------|
| 5,935,102,970    | 73,341,510,176 | 186,912,383,301 |
| Ration of change | B2/B1=12.4     | B3/B1 = 31.5    |

Source: http://sedac.ciesin.columbia.edu/

Since the change of socio-economic outlook is relatively big, the effect of uncertainties of socioeconomic outlook can be much bigger than that of physical hazard prediction.

