Climate Change Projections using Representative Concentration Pathways and HadGEM2-AO Climate Model

Hee-Jeong BAEK, Chonho CHO, Johan LEE, Hyo-Shin LEE, Sun-Yeong GAN, Min-Ji KIM, <u>Kyung-On Boo</u>, Hyun-Suk Kang

Climate Research Laboratory National Institute of Meteorological Research(NIMR) Korea Meteorological Administration(KMA)

Outline

✓RCPs & CMIP5

✓ Future global climate change projection

 Temperature and precipitation
 Climate extreme indices

 ✓ Future climate change over East Asia

 Temperature, Hydrology, etc

 ✓ Summary & Future Plans

CO₂ Emissions and Radiative Forcing for Historic & RCP scenarios

CO₂ Emissions

Radiative Forcing

Representative Concentration Pathways(RCPs)

Name	Radiative Forcing	Concentration	Pathway shape
RCP 8.5	>8.5 W/m² in 2100	> ~1370 CO ₂ -eq in 2100	Rising
RCP 6	~6 W/m² at stabilization	~850 CO ₂ -eq (at	Stabilization without
	after 2100	stabilization after 2100)	overshoot
RCP 4.5	~4.5 W/m ² at stabilization	~650 CO ₂ -eq (at	Stabilization without
	after 2100	stabilization after 2100)	overshoot
RCP 3-PD	peak at ~3W/m² before	peak at ~490 CO ₂ -eq before	Peak and decline
	2100 and then decline	2100 and then decline	

Moss, J. A. et al., 2010, The next generation of scenarios for climate change research and assessment. Nature 463, 747-756, doi:10.1038/nature08823

CMIP5 Modeling Groups

Primary Group	Country	Primary Contact	Primary Group	Country	Primary Contact
NERSC	Norway	M. Bentsen, H. Drange	CSIRO & QCCCE	Australia	L. Rotsyayn, J. Syktus, S . Jeffrey
Hadley Centre	U.K.	M. Collins, C. Jones	NCAR	U.S.	J. Hurrell, G. Meehl
GFDL	U.S.	T. Delworth, I. Held, L. Horowits, R. Stouffer	MRI	MRI	M. Kimoto
IPSL & LMD	France	J.L. Dufresne, S. Bony	NIMR(with Hadley Centre)	Korea	W.T. Kwon
NIES & U. Tokyo	Japan	S. Emori, M. Kawamiya , M. Kimoto	LASG IAP	China	T.Zhou, B. Wang
CCCMa	Canada	G. Flato	NASA GISS	U.S.	G. Schmidt
MPI	Germany	M. Giorgetta	BCC	China	Q. Li, Y. You, Z. Wang, T . Wu, Y, Xu
INGV	Italy	S. Gualdi	INM	Russia	E. Volodin
EC-Earth	Eourope	W. Hazeleger	CERFACS&CNRM	France	S. Planton/D Salas Melia
CSIRO & BMRC	Australia	T. Hirst, K. Puri	U. Reading	U.K.	L. Shaffrey
NASA GSFC	U.S.	M. Suarez			

HadGEM2-AO Climate Model

- The climate model HadGEM2 was developed by Hadley Centre and improved over HadGEM1 (participated in IPCC AR4)
- Simulation for CMIP5 using HadGEM2-ES by Hadley Centre and HadGEM2-AO by NIMR
- Resolution:
 - atmospheric horizontal resolution of $1.875^{\circ} \times 1.25^{\circ}$ and ocean horizontal resolution of $1.0^{\circ} \times 1.0^{\circ}$, with latitudinal resolution increasing smoothly from 30 N/S to 0.33 at equator
 - The vertical resolution for atmosphere and ocean are L30 and L40, respectively

Fig. 1. Processes included in the HadGEM2 model family.

CMIP5 experiments in NIMR

Experiments		RCP	Progress		
Global (~130 km)	Pre-industrial	-	~800 years		
	Historical	_	5-member ensembles (IC: 100 th , 200th , 300 th , 400 th , 500 th year from Prel run)		
	Scenario	4.5	1-member completed		
		8.5	(IC: final states of historical run with IC of the 200th year from PI)		
		6.0	-		
		2.6			

Outline

✓RCPs & CMIP5

✓ Future global climate change projection

 Temperature and precipitation
 Climate extreme indices

 ✓ Future climate change over East Asia

 Temperature, Hydrology, etc

✓Summary & Future Plans

GLOBAL TEMPERATURE CHANGE (2001-2099)

Projected Changes in Global Surface Temperature

ANN

4.8

2.8

RCP8.5

RCP4.5

JJA

4.6

2.6

reference period: 1971-2000

DJF

5.0

2.9

Projected Changes in Surface Temp (2070-2099)

Projected Changes in Regional Surface Temperature

Trends in Temperature Indices

Projected Changes in Global Precipitation

Projected Changes in Precipitation (2070-2099)

Projected Changes in Regional Precipitation

Outline

✓RCPs & CMIP5

- ✓Future global climate change projection
 - Temperature and precipitation
 - Climate extreme indices
- ✓ Future climate change over East Asia
 - Temperature, Hydrology, etc
- ✓Summary & Future Plans

Surface Air Temperature Change (°C) **RCP8.5** 50N 50N 2080s 🚥 2050s <u>020s</u> 4.5 4.5 40N 40N -40N · 7 30N 30N - 3.5 30N 20N -20N -150E 100E 110E 120E 130E 140E 110E 120E 130E 140E 150E 110E 120E 130E 140E 150E

Sea Surface Temperature Change (°C)

4

4.5

5

5.5

6

6.5 7 7.5

3.5

3

2.5

1.5

2

0.5

1

Precipitation Change (%) RCP8.5 20205 2050s 20805 40N · 30N 301 301 0 20N 100E 140E 110E 120E 13⁰E 140E 150E 100E 110E 120E 130E 150E OOE 110E 120E 130E 150E 140E -2525 -20-1510 10 15 20 O **Evaporation Change (%)** 50 2050s 2080s **N20s** 40N 40N 30N 30N 30N 0 20N 100E 150E²⁰ 150E 20N 100E 120E 130E 140E 130E 140E 120E 130E 140E 120E 110E 100E 110E 110E 150E -25 -20 -15 -10 -5 10 15 20 25 0 5 NIMR/KMA

Soil Moisture Content Change (%)

RCP8.5

Summary & Future Plan

- Control and historical runs, and two RCPs(4.5, 8.5) for future projection are now very well progressed (~1400 years)
- RCPs are complete to 2100. RCP4.5/8.5 reaches 2.8/4.8°C
- East Asian temperature and precipitation in the 21st century will increase with lager amplitude than global mean
- We hope to complete simulation using RCP 2.6 and RCP 6.0 by May 2012
- We will submit output to BADC or PCMDI server for CMIP5 & IPCC AR5

Thank you!