

Modeling of snow and glacier melt runoff simulations

<u>Maheswor Shrestha</u>¹, Lei Wang², Sixto A. Duran-Ballen¹, Toshio Koike¹ ¹Department of Civil Engineering, the University of Tokyo ²Institute of Tibetan Plateau Research, Chinese Academy of Sciences

Motivation for AWCI/CCAA Study-Snow & Glacier

- Long term snowfall dataset is needed for bias correction of climate projections, which is currently unavailable in many poorly gauged/ungauged basins.
- Reanalysis dataset can be used as baseline data but they should be corrected in prior to application.
- A method has to be established for snowfall correction, based on analysis of simulated discharge with observed one and simulated snow cover with satellite snow cover, through physically based hydrological modeling. Thus, firstly, we need to develop "the physically based snow & glacier-melt model"

Model Development (WEB-DHM-S)

WEB-DHM with improved **S**now physics (**WEB-DHM-S**) has been developed by incorporating the 3 layer energy balance snow scheme of SSiB3 and prognostic BATS albedo scheme to WEB-DHM.

T_m : Reference height air temperature T_a : Canopy Air Space temperature T_g : Ground(snow free) surface temperature $T_{sn}(Z_j)$: Snow temperature SSIB: Simplified Simple Biosphere Model 3	R_{sw} : Downward shortwave radiation R_{lw} : Downward longwave radiation H_c : Canopy sensible heat flux H_{sn} : Snow sensible heat flux H_{sn} : Snow sensible heat flux	H_g : Ground sensible heat flux E_c : Canopy latent heat flux E_{sn} : Snow latent heat flux E_g : Ground latent heat flux \hat{f}_g : Ground latent heat flux	H(Z _j): Snow enthalpy δ: Transmissivity ε: Emissivity α: Reflectivity(albedo)	D_c : Drainage from canopy D_t : Canopy throughfall $r_{\alpha}r_{b}r_{\sigma}r_{d}r_{soil}$: Aerodyamic resistances $e(T_m), e(T_a), e(Tsn(Z3)), e(T_g)$ -vapor pressures at $T_m T_{\alpha}T_{sn}(Z_3)$ and T_g
SSiB: Simplified Simple Biosphere Model 3	BATS: Biosphere-Atmosphere Transf	fer Scheme		$a_{1}m_{g}$

WEB-DHM-S can simulate 11 land use types with 6 different types of snow states

Туре	Land Use Name	Grid code	Snow/Glacier type	Albedo
1-9	SiB2 type (Bare soil and Forest)	$\begin{vmatrix} 0\\ 1 \end{vmatrix}$	Snow No Snow	Snow (0.85~0.95)
10	Water	1	No Snow	
11	Glacier	2 3 20 30	Debris Free/Clean Glacier Debris covered Glacier Snow over clean glacier Snow over debris	Clean Glacier (0.4) Debris (0.2) Snow over clean glacier and debris (0.85~0.95)

Rain gauges are not heated – Snowfall need to be corrected based on albedo/snow depth/temperature

Application to Dudhkoshi river basin (Nepal)

Snow Cover Area Simulation (MODIS Vs Model)

Slide #6

Application to Dudhkoshi river basin (Nepal)

Land Surface Temperature Simulation (MODIS Vs Model)

(Black in MODIS images indicates that the grids having problems in reproducing LST due to cloud effect)

mean absolute bias = 2.42° C mean relative bias = 0.77° C.

AWCI/CCAA-Narayani river basin (Nepal)

- O Narayani basin, one of the major river basin of Nepal, occupy about 32000 km² (Narayanghat outlet).
- O This river originates from the Himalayas and carries snow fed flows with significant discharge even in the dry season.
- O Highly affected by summer monsoon, about 80% of the precipitation occurs in summer season.

- O 48 rain gauges. (long term data since 1966 or from 2000 to 2009 depending on sites)
- O 27 meteorological gauges which has air temperature data (long term as stated above)
- O 25 discharge gauges (long term)

AWCI/DIAS

Submitted to

AWCI/CCAA-Narayani river basin (Nepal)

- O 65 sub basins have been created during basin delineation.
- O Meteorological Forcing are taken from Global land data assimilation system (GLDAS).
- O Observed air temperature is used in stead of GLDAS. Detrended Inverse Distance Weigt (IDW) interpolation method is used. IDW is used for interpolation of the precipitation.
- O Model is set up for 2002-2003 (3 years continous setup) Hourly simulation at 1 km grid size.
- O MODIS snow cover area is used as intitializing the snow cover area.
- **O** Data in snow covered area almost nil.

AWCI/CCAA-Narayani river basin (Nepal)

Snow Cover Area Simulation (MODIS Vs Model) in 2002 (Overall Accuracy = 91%)

AWCI/CCAA-Punatsangchu basin (Bhutan)

Underestimation of discharge is mainly due to the bias in JRA-25 air temperature

Observed Daily Maximum and minimum temperature at meteorological stations are requested.

AWCI/CCAA - Hunza basin (Pakistan)

 Snow and glacier melt fresh water contribute more than half of the inflow to the Tarbela reservoir (Upper Indus River Catchment)

 The Hunza River contributes nearly one-fifth of the Upper Indus flow. 34% of the basin is glaciated.

AWCI/CCAA - Hunza basin (Pakistan)

Snow Cover Area Simulation (MODIS Vs Model)

AWCI/CCAA - Hunza basin (Pakistan)

Snow/Glacier State Simulation

•Air temperature in 2004 has wide variations which causes the substantial uncertainty in air temperature interpolation. Consequently, large absolute BIAS in discharge in May and June are simulated.

Slide # 17

Yagisawa basin, Upper Tone, JAPAN

Two types of precipitation are corrected.

Rain gauge (AMeDAS), ⇒ AMeDAS - Corr Radar data (Radar-AMeDAS), ⇒ Radar-AMeDAS-Corr Inverse distance Weight (IDW) – Interpolation for meteorological forcing data Detrended IDW for temperature interpolation using a lapse rate of 6.5°C/1000m

Grid : 500 m, **Time step** : Hourly **Period** : 2001-2004

Correction of Rain gauge precipitation, $C_f = 0.001$

4 year average SCF = 1.87

Correction of Radar precipitation, $C_f = 0.007$

4 year average SCF = 3.87

Snow Cover Area Simulation (MODIS Vs Model)

Overall Accuracy = 91 %

		AMeDAS-Corr.				Radar-A-Corr.			
Year	PC	PO	PU	ABS	PC	РО	PU	ABS	
2001	0.92	0.07	0.01	0.04	0.91	0.08	0.01	0.07	
2002	0.87	0.11	0.02	0.11	0.88	0.08	0.04	0.10	
2003	0.94	0.05	0.01	0.03	0.95	0.04	0.01	0.03	
2004	0.92	0.06	0.02	0.07	0.92	0.05	0.03	0.06	

Long term simulation (59 years) of snow depth Upper Tone, Japan (AWCI/CCAA)

Atmospheric Forcing: JP10 data over Japan for 1948-2006 A 10-km and hourly dynamically downscaling simulation dataset from NCEP/NCAR Reanalysis (Experimental Climate Prediction Center in Scripps Institution of Oceanography)

9. Concluding remarks

- 1. A detailed energy balance based multilayered snow and glacier melt model in a distributed hydrological framework has been developed.
- 2. Basin scale evaluation of WEB-DHM-S was performed at Dudhkoshi region of Nepal Himalaya for snow cover and land surface temperature simulations. Snow cover simulation is comparable to the MODIS 8 day snow cover product (MOD10A2) with overall accuracy of 92%.
- 3. WEB-DHM-S model has been developed for four AWCI/CCAA study basins- Narayani (Nepal), Punatsangchu (Bhutan), Hunza (Pakistan) and Upper Tone (Japan).
- 4. Spatial distribution of snow/glacier cover and snow/glacier melt runoff has been simulated well as compared to the MODIS satellite snow cover and the observed discharge, respectively.
- 5. A method has been established to correct the snowfall at the Yagisawa basin of Upper Tone river. The method can be applied at any river basin. In addition, long term simulation (59 years) of snow depth have been simulated well with the use of JP10 reanalysis dataset..

Application of WEB-DHM-S in other AWCI/CCAA snowy basins has been planned in near future.

Thanks for your kind attention

Queries ??? / Comments !!

maheswor@hydra.t.u-tokyo.ac.jp