Flood Forecast and dam operation optimization systems

Oliver Saavedra

Department of Civil Engineering and Environmental Tokyo Institute of Technology

Floods in Asia Pacific Region

• Heavy rainfall brings expected rainfall for agriculture but they might also turn into floods causing damages.

Need 1: Emission of flood warning to perform evacuation timely

• Basins with existing gated dams when operated effective are able to reduce flood damage.

Need 2: Dam release decision to reduce flood peaks and store volume for water-use

Decision support Systems under heavy rainfall

• <u>Flood Warning Support System (FLOWSS)</u>

Goal: Emit flood warning to perform evacuation timely

• <u>Dam Release Support System</u> (DRESS)

Goal: Dam release decision support to reduce flood peaks and store volume for water-use

Flood Warning System FLOWSS

- Using Quantitative Precipitation Forecasts
- Based on Ensemble Method
- Applied in the Huong River, Vietnam

Huong River basin

Date		Nov.					
		24	25	26	27	28	29
Predicted exceedance probability (%)	W.L.3		8	52	\bigcirc		
	W.L.2		74	96	72	\bigcirc	
	W.L.1	6	96	96	96	96	96
Observed	W.L.	0.9	3.1	3.5	3.5	2.4	1.7

DRESS system

Ensemble member generation of QPF $GP(x, y)_{k} = Max \{ QPF(x, y) \times (1 + A\varepsilon N(0, 1) \times wi_{sub} + B\varepsilon N(0, 1) \times wi_{tot}), 0 \}$ Saavedra, Koike et al., 2010 N(0,1) : Gaussian normal distribution wi_{sub} : weight per sub basin; wi_{tot} : weight per sub basin A, B : preference Ensemble precipitation Ensemble discharge weight = 3weight = 2weight = 1weight = 013 17 21 25 29 33 37 41 45 49 53 57 61

Dam release uncertainties event 9-10 Jul 2002

Saavedra, Koike et al., 2010

Results: event 2002 Jul 9~11

Contributing to IWRM

- FLOWSS and DRESS need to be run continuously as in realtime operation
- They can also be used for Climate change impact assessment

