

Climate Change Assessment & Adaptation

Cho Thanda Nyunt and Toshio Koike River and Environmental Laboratory Department of Civil Engineering University of Tokyo

Outline of Presentation

- Background
- Objectives
- Study Framwork
- WEB-DHM application of Kalu Ganga Basin
- GCM Selection
- Bias-correction Method
- Downscaling Method
- Results
- Conclusion & Discussion

BACKGROUND

- By 2050, fresh water availability in Central, South, East and South-East Asia particularly in large river basins is projected to decrease. (IPCC AR4)
- Population growth, industrial development, and agriculture are causing societies to face serious challenges in allocation scarce water resources to increasing demands. (IPCC, 2001)
- Climate change impact assessment on water resources is essential for planning of future Integrated Water Resources Management (IWRM) strategies. (IPCC,2001)
- It is necessary to focus on **long term analysis for basin scale** water balance due to climate change impacts on regional hydrologic process.

Objectives

- To understand the climate change impacts on water resources in basin scale (20 years analysis for past and future)
- To investigate long-term precipitation trend, frequency and subsequence changes in stream flow regimes under the global warming A1B scenario (WEB-DHM)
- To monitor the possibility of flooding and socio-economic loss due to flood risk in near future
- To provide the basic adaptation strategies and usable knowledge to cope with Integrated Water Resource Management and Decision Making for Policy makers in future

Kalu Ganga Basin Characteristic

- 2nd largest river basin in Sri Lanka
- located in wet zone and high annual average rainfall 4000mm
- 2766 km²
- Largest amount of annual per capita water availability about 7750m³ (National level 2300m³)
- Steep gradient in upstream and mild gradients in downstream
- Its lower flood plain suffer from frequent flood in the Southwest monsoon season
- Densely populated in lower flood plain and a potential area for rice production

Map 3: Agro - climatic Zones of Sri Lanka

Ampitiyawatta & Shenglian (2009)

Source :Department of Agriculture, Sri Lanka(DOASL)

GCM Selections

✓ Spatial distribution of 10 parameters

- ✓ 4 region
- ✓May August
- ✓ Monthly Spatial Correlation
- ✓Monthly Root mean square error

Bias Correction Methods for No Rain Days

Bias Corrected Rainfall

GSMaP: Global Satellite Mapping of Precipitation

Dataset	GSMap_MVK+	Observed
Grid resolution	0.1 degree lat/lon	point Rain gauge
Temporal resolution	1 hour	1 day
Domain	Global(60N-60S)	Basin scale
Available period	Monthly(2003–2008) Daily(2003–2008) Hourly(2003–2008)	Daily(1981–2008)

● ⁴⁰⁰¹	4002 ●	4003 •	4004	³³ ● 4005	4006 ●	4007 ●	4008 •
● ^{4009 23}	4010 ⁰	4011 20	€ ⁴⁰¹²	²⁴ 4013	e ⁴⁰¹⁴	4015 •	⁴⁰¹⁶
● ⁴⁰¹⁷	4018 4018	4019 ●	4020 ●	16 9 4021 •	17 •4022	• ⁴⁰²³	¹³ ● ⁴⁰²⁴
0 ■ 4025	• ⁴⁰²⁶	4027 • 6 • 5	● ● 4028	4029 ●	● ⁴⁰³⁰ ● 7	4 031	4032 •
4033	4034	4035 2	4036 ●	³ ● ⁴⁰³⁷	● 4038 ●	4039 •	4040 •
4041	● ⁴⁰⁴²	4043	● ⁴⁰⁴⁴	4045 •	4046	4047 •	4048

Spatial Distribution Pattern of each month from GSMaP Corrected Rainfall

Daily mean Discharge

Changes in Times

100 year Probability Extreme Discharges

New Method for GSMap Spatial Distribution Map

Checking Sensitivity of Numbers of Rain gauges

Ratio Diff from Observed Basin Annual Average Rainfall

Seasonal difference of OBS and Random correction

Conclusion & Discussion

- Bias-correction method was capable of correction large bias of GCM rainfall of annual maximum rainfall, number of no rain days and seasonal cycle pattern.
- Downscaling using seasonal spatial rainfall-map produced from GSMaP products are applicable to basin with poor gauges.
- From sensitivity of number of raingauges, random selection of 6 gauges or 8 gauges based monthly correction of spatial distribution map show annual mean rainfall are acceptable.
- Climate change impacts on the catchment-scale hydrologic system can assess the potential effects of changes to cope with a changing water balance under future scenarios and to support the sound decision for Integrated Water Resources Management (IWRM).

Thanks for your attention

- Daily rainfall from 16 GCMs are corrected.
- Non-Heavy Rainfall
 - Ratio between GCM and Obs. in each month multiplied by GCM daily data.
- Heavy Rainfall
 - By Plotting Position
 - Pattern of Heavy Rainfall is estimated from annual maximum rainfall in 20 years
- No-Rainfall periods
 - By Rank-order statistics

Nowchart of Blended MWR-IR algorithm (GSMaP_MVK algorithm) http://sharaku.eorc.jaxa.jp/GSMaP_crest/index.html

New Method for GSMap Spatial Distribution Map

Evaluation of the precipitation over the South Asian summer monsoon domain (60-110E, 0-30N)

SASM	60110,	030											
Precip	April		May		June		July		August		Sep	Average	
bcc_cm1	0.435363	2.20293	0.351957	3.98466	-0.18979	7.33585	-0.11612	7.69707	0.006347	7.01232		0.013101	6.507475
bccr_bcm2_0	0.822327	1.16383	0.782646	1.82927	0.614945	3.55863	0.560668	3.88737	0.495542	3.63477		0.61345	3.22751
cccma_cgcm3_1	0.710679	1.43027	0.61 05 01	2.43838	0.583323	3.53722	0.489887	4.15787	0.458204	3.98371		0.535479	3.529295
cccma_cgcm3_1_t63	0.633155	1.62093	0.593776	2.513	0.545908	3.64895	0.479107	4.21173	0.427661	4.13408		0.511613	3.62694
cnrm_cm3	0.47961	1.91267	0.45875	2.6902	0.363655	3.98952	0.522781	4.01.02	0.454721	3.75038		0.449977	3.61 0075
csiro_mk3_0	0.681304	1.89885	0.584026	3.18901	0.421825	4.4756	0.602058	4.07465	0.721789	2.96891		0.582425	3.677043
csiro_mk3_5	0.731134	1.78203	0.601754	2.6487	0.335894	4.76901	0.462052	4.52435	0.637283	3.3684		0.509246	3.827615
gfdl_cm2_0	0.80774	1.62894	0.724765	2.37888	0.541752	3.81331	0.722062	3.28271	0.727984	2.86793		0.6791.41	3.085708
gfdl_cm2_1	0.814813	1.39847	0.759711	1.8663	0.648857	3.22663	0.670102	3.47762	0.679901	3.11751		0.689643	2.922015
giss_aom	0.772134	1.62301	0.648293	2.65074	0.178269	5.19428	0.297611	5.14706	0.497111	3.94056		0.405321	4.23316
giss_model_e_h	0.447221	3.66635	0.542641	4.38294	0.497848	5.58869	0.433207	6.63656	0.408023	5.8409		0.47043	5.612273
giss_model_e_r	0.355913	3.64394	0.301 088	4.70783	0.322233	5.48228	0.453387	5.71674	0.484256	4.78768		0.390241	5.173633
iap_fgoals1_0_g	0.797573	1.40983	0.527911	3.08208	0.070555	5.26543	0.103627	5.26839	0.305703	4.1879		0.251949	4.45095
ingv_echam4	0.795484	1.4553	0.746763	1.93977	0.848967	2.26529	0.608655	3.73567	0.651684	3.14852		0.714017	2.772313
inmcm3_0	0.775592	1.36879	0.533247	2.63827	0.460578	4.21.037	0.422828	4.861.08	0.42993	4.11046		0.461646	3.955045
ipsl_cm4	0.81 6262	1.58434	0.662895	2.49371	0.179387	5.16682	0.161723	5.90075	0.422998	4.52524		0.356751	4.52163
miroc3_2_hires	0.785238	1.40889	0.721657	2.06697	0.737769	3.02901	0.427264	4.82263	0.324318	4.9501		0.552752	3.717178
miroc3_2_medres	0.84779	1.12375	0.796952	1.90864	0.714404	3.23897	0.364235	5.00753	0.253745	4.87638		0.532334	3.75788
mpi_echam5	0.815629	1.44921	0.741905	2.65412	0.622195	3.6512	0.513517	4.28713	0.529275	3.84724		0.601723	3.609923
mri_cgcm2_3_2a	0.761313	1.53091	0.682407	2.59346	0.435668	4.59874	0.331338	5.27683	0.326953	4.81737		0.444092	4.3216
ncar_ccsm3_0	0.679412	1.54697	0.51 0291	2.39872	0.467235	3.75278	0.41 4303	4.39304	0.447615	4.13599		0.459861	3.670133
ncar_pcm1	0.622624	1.61	0.518716	3.10274	0.617724	3.79834	0.334982	5.10899	0.346659	4.65725		0.45452	4.16683
ukmo_hadcm3	0.770506	2.13181	0.708289	2.4777	0.511767	4.10427	0.607112	3.96262	0.593314	3.97023		0.605121	3.628705
ukmo_hadgem1	0.788502	1.97911	0.699569	2.84554	0.522098	4.58143	0.637898	4.81879	0.627638	4.66448		0.621801	4.22756
												051711	3 883696

Total model-average

Calculated monthly Scorr and RMSE from May to August for each 23 GCM models, and then obtained the 4 months averages. If a model satisfies both Scorr and RMSE better than total model average, it is counted as a good model for the precipitation over the SASM domain.

SAM: South Asian Monsoon		EAM:	East A	sian M	lonsoo	n	SEA: Sea Surface				
	SAM			EAM			-	Tibetan H			Total
	Pr.	OLR.	Pres.	Pr.	OLR.	Pres.	Pres.1	Pres.2	Та	sst	Score
gfdl_cm2_1	1	1	1	1	1	1	0	1	1	1	9
cccma_cgcm3_1	1	1	1	-1	1	1	1	1	1	1	8
cccma_cgcm3_1_t63	0	1	1	0	1	1	1	1	1	1	8
gfdl_cm2_0	1	1	1	1	1	1	0	1	0	1	8
miroc3_2_medres	1	1	1	1	1	0	0	1	0	1	7
mpi_echam5	1	1	1	-1	1	0	1	1	1	1	7
ingv_echam4	1	1	0	1	1	0	0	0	1	1	6
miroc3_2_hires	1	0	1	1	0	0	1	1	1	0	6
giss_aom	-1	1	1	1	0	1	0	1	0	1	5
csiro_mk3_0	1	1	1	1	-1	0	1	0	1	-1	4
ukmo_hadgem1	0	0	1	0	1	1	1	1	-1	0	4
ukmo_hadcm3	1	1	0	0	-1	1	1	1	1	-1	4
cnrm_cm3	0	0	-1	0	1	1	1	1	0	-1	2
ncar_ccsm3_0	0	0	0	-1	1	-1	1	0	1	1	2
bccr_bcm2_0	1	1	0	0	0	1	0	0	-1	-1	1
mri_cgcm2_3_2a	-1	-1	-1	1	1	0	0	0	1	1	1
csiro_mk3_5	0	0	0	1	-1	0	0	-1	0	0	-1
ncar_pcm1	-1	0	1	-1	-1	-1	1	1	0	-1	-2
ipsl_cm4	-1	-1	1	-1	0	0	-1	0	-1	1	-3
iap_fgoals1_0_g	-1	-1	-1	-1	-1	0	0	1	0	-1	-5
inmcm3_0	-1	-1	1	-1	0	-1	0	-1	-1	-1	-5
giss_model_e_h	-1	-1	-1	0	-1	0	-1	-1	0	0	-6
giss_model_e_r	-1	-1	0	-1	-1	0	-1	-1	0	0	-6
bcc_cm1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10

- Daily rainfall from 16 GCMs are corrected.
- Non-Heavy Rainfall
 - Ratio between GCM and Obs. in each month multiplied by GCM daily data.
- Heavy Rainfall
 - By Plotting Position
 - Pattern of Heavy Rainfall is estimated from annual maximum rainfall in 20 years
- No-Rainfall periods
 - By Rank-order statistics