Current Country Activities related to AWCI:

Demonstration Project (DP): Water balance study in the Selbe river basin, Tuul river, Mongolia

G. Davaa, D.Oyunbaatar and P. Gomboluudev Institute of Meteorology and Hydrology, Mongolia

Seoul, Korea – 6-8 Oct., 2011

Main goal of the DP is to assist development, implementation and revision of Integrated River Basin Management plan in Selbe and Tuul river basins

Collaborator: Institute of Meteorology and Hydrology, Ulaanbaatar, Mongolia, Hiroshima University, Japan and National committees for UNESCO/ IHP, Mongolia and Japan,

Objectives: Long-term monitoring of water and energy cycles in the Selbe river basin

Introduction

Selbe stream, one of middle reach tributaries of the Tuul river, is located in the North of Ulaanbaatar. Its cathment area is round 300 sq.km and extends in between N 47^î 55' till 48° 15' and E106° 50'-107° 00'.

Location of measurement sites in the Selbe river basin

Topography

-Mountainous topography -Its elevation ranges from 1300 till 2120 m.

Station	Cathment area, sq.km	Stream length, km	Basin mean elevation, m	River bed slope	Forest area, %
Sanzai	34.2	8.3	1620	0.021	63.7
Dambadariaa	190	26.2	1510	0.012	54.6
Bambadaijaa					

Landscape feature in upstream area of watershed

Urban feature in middle and lowerstream area of watershed

Climate and Soil

- ♦ Mean annual air temperature is -1.2 °C.
- ↔Warm period with air temperature above 0°C continues within 172-178 days in year.
- ♦ Annual min. temperature reaches -39.6 ^oC in January.
- ✦Annual max. temperature reaches +34.5⁰C in June or July.
- Annual mean precipitation is 258.5 mm and its 87.7 % occures during May-Sept. Daily max. rainfall totals as 71.6 mm.

Hydrological and o	clim	nate data ha	ve been u	ploaded to DIAS
since 2004-2008.	Nº Station		Data type	Time period
		Damba	Precipitation	May-Oct 2004
				May-Oct 2005
As follows:				May-Oct 2006
AS IUIIUWS.			Streamflow	May-Oct 2004
	1			May-Oct 2005
				May-Oct 2006
			Water level	May-Oct 2004
				May-Oct 2005
				May-Oct 2006
		Ikh surguuli_University	Air temperature	Jan-Dec 2004
				Jan-Dec 2005
	2			Jan-Dec 2006
			Precipitation	Jan-Dec 2004
				Jan-Dec 2005
				Jan-Dec 2006
		Takhilt_Ulaanbaatar	Air temperature	Jan-Dec 2004
				Jan-Dec 2005
	3			Jan-Dec 2006
			Precipitation	Jan-Dec 2004
				Jan-Dec 2005
				Jan-Dec 2006
		Sanzai	Streamflow	May-Oct 2004
				May-Oct 2005
	4			May-Aug 2007
			Water level	Navy Oct 2008
				Nav Oct 2004
				Nav Oct 2005
				IVIAY-UCT 2006

Tuul river basin of demonstration project and climate change assessment and adaptation

Geographical location:

Climate :

Temperature

Annual temperature is 0.4-3.3°C

• Absolute maximum temperature is 32.9-40.2°C and minume varies temperature -36.7...-46.5°C

Precipitation

• Annual precipitation is 222-275mm, and 68-78% of the total and precipitation falls as rain in summer

Daily maximum precipitation reaches43.8 -78.7mm

Data availability since 1980-2010

- 3 hourly climate data in above stations
- Hydrology

<u>Climate change scenarios</u>

• Tokyo University tool-statistical downscaling

Dynamic downscaling using RCM

Preliminary study of climate change scenarios in Tuul river basin using HadCM3, A1B

Strengthening Integrated water resource management:

Major river basins where proposed to establish river basin Consuls and plans

The Current Availability and Use of Data in Decision Making in the Basin

-What are the different water-related decisions made on an annual basis in the basin, and who makes the decisions?

National water agency, River basin authority, River basin Consul (involving local government, NGO, public representatives) make decision

Hydrological, meteorological and remote sensing (MODIS and other) and hydrological and climate models and data analysis results are used in decision making.

There are many gaps encountered in using these data and models (limited data, environmental changes are very fast, data collection, calibration and validation of models are very hard and slow process, and etc.).

Extending real time hydro-meteorological observation network in upstream sites in a basin to cope with data needs and services for extreme events such as floods.

Greatest impediment to successful management of the basin is real time or near time data collection.

The Current Availability and Use of Data in Decision Making in the Tuul and Selbe river basin

Strategy, countermeasures and data availability

Socio-economic scenarios (long-term development goals, programs)

Climate change scenarios at regional and basin scale

Land use scenarios (options)

Impact assessment results on ecosystems and vulnerability analysis

Adaptation policy

Impact of climate change and anthropogenic pressures on water resources and its integrated management

What we expect from GEOSS / WCI

GEOSS Water Cycle Integrator is *a proposal to CEOS and GEO, proposed by Prof. Toshio Koike,* Japan GEO WG Chair, *develops a holistic coordination capability of the following function* in cooperation with various partners:

- observation integration
- science and model integration
- data integration & analysis
- cross-Socio Benefit Areas and Community of Practices
- management system integration
- sustained education framework

Use of GEOSS products, (MOLTS, Satellite (GPM, soil moisture (MAVEX), glacier (ALOS), lake, natural disaster monitoring), down scaling and modeling and prediction) and WCI achievements