Distributed Hydrological Modeling in Cold Regions 2014.09.17

WEB-DHM-S model – physical and technical details, applicability discussion

Maheswor Shrestha Research Associate, Department of Civil Engineering

WEB-DHM-S Model

Seasonal snow – temporary buffer for precipitation

source: ETH Lecture

Snowdepth measurement

Ultrasonic sounder

Other: Laser mapping

Snow water equivalent (SWE)

- SWE is the water balance parameter in hydrological models.
- SWE is the amount of water contained within the snowpack.
- It can be thought of as the depth of water that would theoretically result if the entire snowpack was melted out instantaneously.

Density of snow (ρ_s)

Density of water (ρ_w)

 $SD \times \rho_s = SWE \times \rho_w$

Snow Density

$$SD \times \rho_s = SWE \times \rho_w$$

Density varies from 50 to 500 kg/m3

New snow is light – low density Old snow is heavy – high density

Why old snow is heavy ?

Snow Metamorphism Water from snow melt Overburden compaction

Snow Compaction – Snow Density

new snow

http://www.fsavalanche.org/Encyclopedia/cornsnow.htm

Overburden

Amount of water increases in snow and density increases

Snow Albedo

Albedo = Reflectance

Why snow is white?

Snow Energy Balance

$$Q_m = R_n - H_{sn} - \lambda E_{sn} + G_{pr} - G_{soil} - \frac{\partial U}{\partial t}$$

Permanent snow(firn)/Glacier

If the snow cover is not completely melted away in the summer season and persists until the following accumulation period, it is referred to as permanent snow cover/firn. Firn can be defined as wetted snow that has survived one summer without being transformed to ice [Paterson, 1994].

As metamorphism proceeds, the interconnecting air passages between the grains are closed off, and a state of glacier ice is reached which visibly moves under its own weight in response to gravitational force [Paterson 1994; Singh and Singh, 2001]

Types

Temperature – Temperate (0 degree) and cold region Surface characteristics - Clean and Debris covered

Glacier Mass Balance

Idealized seasonal cycle of glacier mass balance [after Paterson, 1994].

Albedo Values

Surface Type	Albedo range	Mean value
Dry snow	0.80 – 0.97	0.84
Melting snow	0.66 – 0.88	0.74
Firn	0.43 – 0.69	0.53
Clean ice	0.34 – 0.51	0.40
Slightly dirty Ice	0.26 – 0.33	0.29
Dirty ice	0.15 – 0.25	0.21
Debris covered Ice	0.10 - 0.15	0.12

[after Paterson, 1994]

Snow/Glacier state evolution

Snow/Rain Threshold

The COMET Program

Snow/Rain Threshold

Tair > Tcr , Rainfall Tair ≤ Tcr, Snowfall Tcr = -1 to 2, normally 0°C

Advanced parameterization (Kienzel, 2008; Sugaya, 1991)

Fig. 2. Relationship between the ratio of snowfall amount and wet-bulb temperature.

(Sugaya, 1991)

$$\begin{split} s(T_W) &= 1 - 0.5 \exp(-2.2(1.1 - T_W)^{1.3}) \\ s(T_W) &= 0.5 \exp(-2.2(T_W - 1.1)^{1.3}) \\ & \left(T_W < 1.1^{\circ} \text{C}\right) \\ & \left(T_W \ge 1.1^{\circ} \text{C}\right) \\ & T_W = 0.584T_a + 0.875e - 5.32, \end{split}$$

Modeling works

Degree Day Model

Just a function of temperature Simple, Empirical Degree day factor parameter MELT = DDF * Tair

DDFsnow, DDFice, DDFdebris Region specific Needs to be calibrated

Lumped model: SRM, HBV Distributed hydrological model SWAT, MIKE-SHE, GBHM

Energy Balance Model

$$Q_m = R_n - H_{sn} - \lambda E_{sn} + G_{pr} - G_{soil} - \frac{\partial U}{\partial t}$$

$$Melt = \frac{Q_m}{\rho_w h_v}$$

Where hv is the latent heat of fusion Single to Multi-layered model

In WEB-DHM-S

$$H(Z_{j}) = C_{v}(Z_{j}) [T_{sn}(Z_{j}) - 273 .16] - f_{ice}(Z_{j}) h_{v} \rho_{s}(Z_{j})$$

$$\frac{\partial H(Z_j)}{\partial t} = -\frac{\partial G_{sn}(Z_j)}{\partial Z}$$

$$G_{sn}(Z_j) = \begin{cases} R_{nsn} - H_{sn} - \lambda E_{sn} + G_{pr} & (j = 3) \\ K(Z_j) \frac{\partial T_{sn}(Z_j)}{\partial Z} + SW_{sn}(Z_j) & (j = 2, 1) \end{cases}$$

Albedo in WEB-DHM-S (Dickinson et al., 1993)

Snow aging factor (f_{age})

$$f_{age} = \frac{\tau_s}{(1+\tau_s)}, \qquad \tau_s^{t+\Delta t} = (\tau_s^t + \Delta \tau_s) [1 - 1000P_s]$$
$$\Delta \tau_s = \frac{(r_1 + r_2 + r_3)\Delta t}{\tau_0} \quad \begin{vmatrix} \tau_0 = 1 \times 10^6 s \\ r_1 = \exp\left[5000\left(\frac{1}{273.16} - \frac{1}{T_{sn}}\right)\right] \\ r_2 = (r_1)^{10} \le 1 \\ r_3 = 0.3 \end{vmatrix}$$

Effect of grain growth due to vapor diffusion (r1) Effect due to freezing of melt water (r2) Effect of dirt and soot (r3) Compaction in WEB-DHM-S (Jordan et al., 1991)

$$\rho_{s} = \max \left\{ \left[109 + 6 \times (T_{air} - 273.16) + 26 \times \sqrt{u_{m}} \right], 50 \right\} (Brun \ et \ al., 1992)$$

Density of Fresh snow ~ function of air temperature & wind speed

$$\left[\frac{1}{\Delta z}\frac{\partial\Delta z}{\partial t}\right]_{overburden} = -\frac{W_s \times \exp\left[-C_5 \times (273.16 - T_{sn}) - C_6 \times \rho_i\right]}{\eta_o}$$

$$\left[\frac{1}{\Delta z}\frac{\partial\Delta z}{\partial t}\right]_{melt} = -\frac{dh_s}{h_s}$$

Thermal conductivity

$$K = K_a + (7.75 \times 10^{-5} \rho_s + 1.105 \times 10^{-6} \rho_s^2) \times (K_i - K_a)$$

where K_i (2.29 Wm⁻¹K⁻¹) and K_a (0.023 Wm⁻¹K⁻¹)
Dense snow, snow that is compacted
or wet, loses much of its insulation
value because it loses a lot of its
trapped air.

Radiation penetration

$$SW_{sn}(Z_j) = \begin{cases} SW_{nsn} \times \left[1 - \exp(-\beta_{vis}.Z_j - 0.002.\beta_{nir})\right] & \text{toplayer} \\ SW_{nsn} \times \left[1 - \exp(-\beta_{vis}.Z_j)\right] \times \exp(-\beta_{vis}.Z_{j+1} - 0.002.\beta_{nir}) & \text{middle layer} \\ SW_{nsn} \times \exp(-\beta_{vis}.Z_{j+1}) \times \exp(-\beta_{vis}.Z_{j+2} - 0.002.\beta_{nir}) & \text{bottom layer} \end{cases}$$
(Jordan, 1991)

Where, $\beta_{vis} = 0.003795 d^{-1/2} \rho_s(Z_j)$, $\beta_{nir} = 400$, d = grain size diameter

	∫2.796 <i>mm</i>	$400 \le \gamma_i \le 920$
$a = \langle$	$0.16 + 0.11(\gamma_i / 1000)^4$	$\gamma_i < 400$

High density = large grain size = radiation is more scattered in forward direction (into the snowpack), increasing absorption of radiation

Layer Division

Integrated modeling System : WEB-DHM-S

Point-scale Evaluation

Open Swiss site: Snow Depth and SWE

WEB-DHM (Control Run)

WEB-DHM + Realistic Constant Albedo (VIS: 0.85/NIR:0.65) -- Not Improved

- WEB-DHM + BATS Albedo scheme
- WEB-DHM + 3 layer snow scheme

- -- Only SWE Improved
- -- Depth/SWE Improved but still early melt

WEB-DHM + 3 layer snow scheme + Realistic constant albedo -- Depth/SWE prolonged/overestimated

WEB-DHM + 3 layer snow scheme + BATS albedo = WEB-DHM-S -- Both SWE/depth Improved

Albedo scheme and 3 layer snow scheme are equally

Density, Runoff, Albedo and Temperature

Snow depth Results@ SnowMIP open sites Slide # 28

SnowMIP: Snow Model Intercomparison Project

Forest Site: Vegetation Effect

Fraser Experimental Forest (2004-2005)

δ: Transmissivity

ε: Emissivity

JSCE]

α: Reflectivity (albedo)

Case 2: Vegetation Interception capacity=0.3mm (Default in SiB2) Simulated Well

Overestimation

Case 3: Same as Case 2 with Interception capacity of canopy = 1 mm (3*Case2) Little underestimation

Basin-wide Model development & Validation

Basin-wide Model development & Validation

Point-scale snowfall correction

Rain gauges are not heated

Snowfall need to be corrected based on albedo/snow depth/temperature

Pyramid: Dudhkoshi

USR (W/m²)

USR (W/m²)

USR (W/m²)

USR (W/m²)

USR (W/m²)

USR (W/m²)

Dudhkoshi: Snow Cover

Spatial Distribution of Snow Cover

Pixel-by-Pixel Analysis

Slide # 34

MODEL	MODIS		
	Snow	No Snow	
Snow	Α	В	
No Snow	С	D	

N = Total basin pixels A = Number of Pixels for MODIS = Snow, MODEL= Snow

Evaluation Indices

Proportion Correct (PC)	(A+D)/N	0.90
Underprediction (PU)	C/N	0.10
Overprediction (PU)	B/N	0.10
Probability of Detection (POD)	A/(A+C)	0.90
False Alarm Ratio (FAR)	B/(B+D)	0.10
Bias Ratio Score (BRS)	(<u>A+B)</u> (A+C)	1.10

[Shrestha et al., 2011, JHM]

Dudhkoshi: Land surface temperature

MODEL follows the MODIS in simulating the seasonal variation of LST

Slide # 35

Langtang Basin

Hydro-met data – only ONE station

(Dept. of Hydrology & Meteorology, GoN)

- 2 hourly wind speed
- 6 hourly air temperature
- 6 hourly relative humidity
- 2 hourly solar radiation
- Daily (Manual) & hourly (AWS) precipitation
- Daily Discharge
- 1988-2004

Downward	Slope	
Shortwave radiation	Aspect	
Cloud Amount	Direct & diffuse	
<i>Gourdiann (</i> 1977)	(Visible and near infrared)	
Air Temperature	Air Pressure	
Environmental Lapse rate	(Based on Elevation)	
Downward	Wind Speed	
longwave radiation	Precipitation	
Crawford & Duchon (1999)	Snowfall (Tair ≤ If) Rainfall (Tair > Tf)	

Langtang Basin

Spatial distribution of snow/glacier state

Land Snow over Land Clean glacier Snow over clean glacier Debris covered glacier Snow over debris glacier

Hunza Basin (13700 km²)

Gauge Data – Max/Min air temperature, relative humidity, precipitation, total solar radiation at daily time step APHRODITE precipitation data GLDAS data (Humidity, Shortwave, Wind speed)

RESULTS NOT PUBLISHED

RESULTS NOT PUBLISHED

Hunza Basin

Upper Indus Basin Karakoram

Correction of snowfall in basin scale

Shrestha, Wang, Koike 2014 (HESS)

MODIS = Spectro-Radiometer onboard Terra Satellite

Correction of snowfall in basin scale

Summary

- 1. A Comprehensive Modeling system has been established which can simulate the Snow processes and Glacier processes and Forest snow processes simultaneously in a basin scale. Point and basin scale validation have been achieved at multiple sites.
- 2. Basin scale snowfall correction algorithm has been developed based on observed discharge and satellite snow cover and well tested in Upper Tone basin.