Bias Correction and Downscaling Techniques for Climate Change Assessment

Statistical Bias correction and Downscaling of Climate Models using DIAS Online Bias Correction & Downscaling Tools

> Dr. Mohamed Rasmy Project Associate Professor EDITORIA, Dept. of Civil Eng., The University of Tokyo.

AWCI-Training Program, Pakistan, Sep. 16^{5h} -17th, 2014 UNIVERSITY OF TOKYO

Improving understanding and downscaling/prediction capabilities of meteorological, hydrological, and climatological events, will improve our resilience and adaptation mearsures, reduce risks and damages, and bring several social and economic benefits.

GCMs – Fundamental tool for weather & climate

A General Circulation Model (GCM) is a mathematical model of the general circulation of the planet's atmosphere (and oceans) based on mathematic equations that represent physical processes.

Schematic for Global **Atmospheric Model** Horizontal Grid (Latitude-Longitude) Vertical Grid (Height or Pressure) Hamp

The primary earth system components in GCM include the atmosphere, oceans, land surface – including vegetation, and the cryosphere (ice and snow)

→ more complicated but major hope for reliable results

Evolution of GCMs

Evolution of GCMs

Bias in CGCM

Biases in GCM output have been attributed to various climate model deficiencies such as

- 1. Coarse representation of terrain
- 2. Cloud and convective precipitation parameterization
- **3. surface albedo and vegetation feedback**
- 4. representation of land-atmosphere interactions
- 5. --
- **6.** ----**7.** ----
- 8. ---
- 9. ---
- 10. --

11. so on.

Topography in GCMs-CMIP3

Downscaling approaches

- SD \rightarrow Derivation of transfer function
 - Low-cost, Site dependent
 - GCM biases greatly influence the downscaled information.
- DD → RCMs & higher resolution datasets to simulate finer-scale processes consistent with larger scale evolution from GCMs.

Bias in CGCM

Some of these deficiencies, as persistent model characteristics, would be expected to result in biases in the GCM output that are similar during different historical periods and into the future.

Review: Station Based Statistical Bias correction

Quality of observational dataset limits the quality of bias corrections

The bias behavior of the model does not change with time, i.e., the transfer function is time independent and thus applicable for future

Limitation: Temporal error major circulation systems can not be corrected, i.e., onset of monsoon

#	Country	CCAA Study Basin Name	Identical with AWCI DP basin?	# of Stations.	Obs.	Period (longest period)	Remarks
1	Bangladesh	Meghna	yes	8	Precipitation	1980 - 2000	
2	Bhutan	Punatsangchhu	yes	14	Precipitation	1985 - 2010	
3	Cambodia	Sangker	yes	5	Precipitation	1981 - 2008	
4	India	Upper Bhima	no	36 17 10	Precipitation Discharge Temperature	1970 - 2006 1973 - 2007 1985 - 2002	
5	Indonesia	Citarum	no	116	Precipitation	1980 - 2009	
6	Japan	Tone	yes	4	Precipitation	1901 - 2000	
7	Korea	Upper Chungju-dam	yes				
8	Lao PDR	Sebangfai	yes				
9	Malaysia	Langat	yes	19	Precipitation	1980 - 2000	
10	Mongolia	Tuul	no	8	Precipitation	1980 - 2000	
11	Myanmar	Shwegyin	yes	3	Precipitation	1980 - 2000	
12	Nepal	Narayani	no	51	Precipitation	1957 - 2010	
13	Pakistan	Hunza	no	2	Precipitation	1999 - 2008	
14	Philippines	Pampanga	yes	3 6	Precipitation AWS	1961 - 2000 1961 - 2011	
15	Sri Lanka	Kalu Ganga	yes	8	Precipitation	1980 - 2010	
16	Thailand	Mae Wang	yes	6	Precipitation	1921 - 2011	
17	Uzbekistan	Chirchik-Okhangaran	yes	11	Precipitation	1979 - 2005	
18	Vietnam	Huong	yes	9	Precipitation	1976 - 2009	

Log-In to the DIAS

nter your Email address and	Forgot your password ? <u>Please reset your password</u>
assword mail Address: a@hydra.t.u-tokyo.ac.jp	 Please register if you don't have a account. For security reasons, please Log Out and Exit your web browser when you are done accessing services that require authentication!
assword:	
<u>W</u> arn me before logging me into other tes.	
OGIN	
wered by JA-SIG Central Authentication Service	3.3.5
oyright © 2009-2010 DIAS All Rights Reserved.	

Log-In to the DIAS

→ C 🖌 🗋 dias.tkl.iis.u-tokyo.ac.jp/model-eval/stable/index.html

Quantitative Evaluation of AOGCM *** Release 1.2 : New functions added (17/June/2013)

- 1. Intercomparison : Re-analysis/Observation Data vs. CMIP3 Model Output
 - <u>1-D Plot (time-series)</u>
 - <u>2-D Plot</u>
 - <u>Vector Diagram</u>
 - Cross-sectional View
 - Longitude/Latitude-Time , Longitude/Latitude-Height
 - Vertical Profile
 - <u>1-D Plot</u>, <u>Vector Diagram</u>
- 2. Comparison of Global Warming Projection between:
 - <u>Climate Models</u>
 - <u>Emission Scenarios</u>
 - Periods of Analysis Time (Multimodel Ensemble Prediction)
 - <u>Daily Data</u>, <u>Monthly Data</u>
- 3. Tools for CMIP3
 - · Bias Correction (AWCI training program participants only)
 - <u>APHRODITE</u>, <u>In-situ Data</u>
 - Data Download
 - <u>Daily Data</u>, <u>Monthly Data</u>
 - Model Evaluation
 - <u>Monthly Data</u> (Restricted Access)

Basin Boundary Information

Country	Basin lon-lat (approx)
Bangladesh- A	23-26N, 90-95E
Bhutan -S	26-30N, 89-91E
Cambodia- P	12-14N, 102-104E
India	N/A
Indonesia- P	6-8S, 107-108E
Japan- S	36-38N, 138-140E
Malaysia- A	2-4N, 101-104E
Mongolia- S	46-50N, 102-109E
Myanmar- A	17-19N, 96-98E
Nepal- S	27-30N, 82-86E
Pakistan- A	35-38N, 74-76E
Philippines-P	15-17N, 120-122E
Sri Lanka- A	6-8N, 79-81E
Thailand- P	16-21.5N, 96-101E
Uzbekistan	40-43N, 69-72E
Vietnam- P	15-17N, 107-108E

Uncertainty Cascade

The uncertainty cascade in climate change impact assessment and adaptation analysis

Quality of observational dataset limits the quality of bias corrections

The bias behavior of the model does not change with time, i.e., the transfer function is time independent and thus applicable for future

Limitation: Temporal error major circulation systems can not be corrected, i.e., onset of monsoon

Please upload data to get better output

