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Abstract. Adequate estimation of the spatial distribution 1160 mm (780 mm before correction). Execution of sensitiv-
of snowfall is critical in hydrologic modelling. How- ity runs against other model input and parameters indicated
ever, this is a well-known problem in estimating basin- thatCisnow could be affected by uncertainty in shortwave ra-
scale snowfall, especially in mountainous basins with datadiation and setting of the threshold air temperature param-
scarcity. This study focuses on correction and estimatioreter. Our approach is suitable to correct snowfall and esti-
of this spatial distribution, which considers topographic ef- mate its distribution in poorly gauged basins, where elevation
fects within the basin. A method is proposed that opti- dependence of snowfall amount is strong.

mises an altitude-based snowfall correction factGgnow).

This is done through multi-objective calibration of a spa-
tially distributed, multilayer energy and water balance-based
snowmelt model (WEB-DHM-S) with observed discharge
and remotely sensed snow cover data from the Moderate Red-
olution Imaging Spectroradiometer (MODIS). The Shuffled
Complex Evolution—University of Arizona (SCE-UA) auto- Solid precipitation (snowfall) is of great importance in moun-
matic search algorithm is used to obtain the optimal value oft@in snow hydrology, since snow acts as a natural reservoir by
Cisnow for minimum cumulative error in discharge and snow storing water in winter and releasing it in spring. Snowmelt
cover simulations. Discharge error is quantified by Nash-discharge from mountain snowpack is an important source
Sutcliffe efficiency and relative volume deviation, and snow Of energy for hydropower in the low-flow season and wa-
cover error was estimated by pixel-by-pixel analysis. Theter for agriculture and biodiversity maintenance on local
study region is the heavily snow-fed Yagisawa Basin of theand regional scales. With its intrinsic radiative (high albedo)
Upper Tone River in northeast Japan. First, the system wadnd thermal (low thermal conductivity) properties, snow can
applied to one snow season (2002—2003), obtaining an optistrongly modulate energy and water interactions between the
misedCrsnow Of 0.0007 nT2. For validation purposes, the op- atmosphere and land surface. The considerable spatiotempo-
timised Cisnow Was implemented to correct snowfall in 2004, ral variability of snow distribution at basin scale is important
2002 and 2001. Overall, the system was effective, implyingin determining the timing and magnitude of spring snowmelt
improvements in correlation of simulated versus observecdischarge. Such variability can increase the probability of
discharge and snow cover. The 4yr mean of basin-averagéroughts and snowmelt runoff-induced floods. Hence, ac-

snowfall for the corrected spatial snowfall distribution was curate prediction of discharge during snowmelt season is
imperative to support optimal water resource planning and
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management (Singh and Singh, 2001; Armstrong and Brunsnow process model. However, the use of river discharge data
2008). alone is inadequate to correct and estimate the spatial distri-
Towards better representation and accurate simulation obution of snowfall, since discharge represents only the inte-
basin-scale snow processes, many physically based singlgrated response of the catchment water balance. These water
or multi-layer energy balance distributed snowmelt mod- balance-based methods therefore have limited applicability
els have been developed (e.g. Bléschl et al., 1991; Gareto predominantly snow-fed basins, since snow accumulation
and Marks, 2005; Liston and Elder, 2006; Letsinger andand ablation are intricately linked not only to water balance
Olyphant, 2007; Shrestha et al., 2012a; Mahat and Tarbotorhut also energy balance.
2012). Successful parameterization of the physical processes Along with discharge data, the integration of basin-scale
can be achieved by the energy balance snow models reducirgnow properties (e.g. observed snow depth, snow water
calibration efforts and allowing intra-basin transfer of knowl- equivalent, and snow covered area) in a hydrologic model
edge. However, even though a model is physically based, itould be one approach to account for spatial snow dynam-
may still produce inaccurate results if the forcing is incor- ics. Such an integrated dataset may be referred to as “soft
rect (e.g. Beven, 2004; Garen and Marks, 2005). Precipitadata” for internal model process verification on spatial scales
tion has the greatest uncertainty among all forcings for dis-(Seibert and McDonnell, 2002). Basin-scale in situ observa-
tributed hydrological model (e.g. Andréassian et al., 2001;tions of snow properties are limited and difficult to conduct.
Beven, 2004; Bardossy and Das, 2008; Moulin et al., 2009) Consequently, satellite-derived snow covered area (SCA)
and uncertainty is greater for snowfall than for rainfall. This may be regarded as a relatively reliable snow product or in-
higher uncertainty in snowfall is caused by effects of multiple dex for representing large-scale snow variability, and may
factors like wind, topography, blowing and drifting, wetting, represent the most effective soft data in hydrologic modelling
and evaporation losses at point scale (Sevruk, 1982; Goodifor quantifying the spatial distribution of snowfall in poorly-
son et al., 1998; Fortin et al., 2008), as well as the wind dis-gauged mountainous river basins.
tribution and orographic dependencies at basin scale (WMO, In recent years, the Moderate Resolution Imaging Spec-
1986; Milly and Dunne, 2002; Xia and Xu, 2007; Valery et troradiometer (MODIS) snow cover product has been widely
al., 2010). Inconsistency in basin precipitation and snowmeltused in multidisciplinary studies, owing to its high spa-
discharge is observed because of uncertainty in the snowfatiotemporal resolution (daily and 8 day product on a 500 m
distribution (Milly and Dunne, 2002; Lohmann et al., 2004; grid) and high accuracy relative to snow depth observations
Fekete et al., 2004; Tian et al., 2007; Yang et al., 2009; Valeryat basin to regional scale (e.g. Klein and Barnett, 2003; Para-
et al., 2010; Bartolini et al., 2011). jka and Bldsch, 2006; Pu et al., 2007; Wang et al., 2008;
Several correction methods (Goodison et al., 1998; AdamParajka and Blosch, 2012). MODIS snow data have been ex-
and Lettenmaier, 2003; Yang et al., 2005; Fortin et al., 2008)ploited as forcing for snowmelt runoff models (e.g. Li and
have been developed to overcome systematic errors in snowAf/illiams, 2008; Immerzeel et al., 2009; Tahir et al., 2011),
fall measurements at point scale. Some studies were designexs a tool in model evaluation (e.g. Shamir and Konstan-
to avoid both systematic and non-systematic (site specificline, 2007; Bavera and Michele, 2009), as model input in
biases associated with snow gauges (Cherry et al., 2005). Thidata assimilation schemes (e.g. Clark et al., 2006; Zaitchik
method of Cherry et al. (2005) uses observed snow deptland Rodell, 2009), as integrated soft data in calibrating con-
and a physics-based land surface model to solve an inverseeptual models (e.g. Parajka and Blésch, 2008; Sorman et
problem for snowfall. It reconstructs snowfall by calculat- al., 2009; Franz and Karsten, 2013), and for reconstructing
ing the snowfall that must have occurred to produce the obthe spatial distribution of snow water equivalent using dis-
served snow depth, given the physics of the model. Howevertributed hydrologic models (Molotch and Margulis, 2008).
all these methods deal with snowfall measurement errors at Unlike prior studies regarding use of the MODIS snow
point scale. The areal distribution of snowfall is still a ma- cover product and river discharge in calibration and eval-
jor problem when extending methods based on a point scaleation of lumped and distributed hydrologic models, this
to distributed snowmelt modelling, because of insufficientwork focuses on a new approach to correction of snowfall
gauge density across a watershed and methods of interpéa basin scale. This approach uses a comprehensive multi-
lating point data (Fassnacht et al., 2003; Valery et al., 2009]ayer, energy balance-based snowmelt model, with both wa-
2010). ter and energy balance closure in a snow-soil-vegetation-
There have been a few studies regarding the correction chtmosphere transfer-based distributed biosphere hydrologic
snowfall at basin scale. Valery et al. (2009) obtained cor-modelling framework (WEB-DHM-S; Shrestha et al., 2010,
rected precipitation (both snowfall and rainfall) as a solution2012a). The method optimises an elevation-dependent cor-
of an inverse problem of the hydrologic cycle at a daily time rection factor, using a heuristic algorithm called Shuffled
step, which minimised the difference of observed and simu-Complex Evolution—-University of Arizona (SCE-UA; Duan
lated discharge volume through a simple water balance foret al., 1992). First, error between the simulated and observed
mula. Bartolini et al. (2011) followed the same concept to at-discharge at basin outlet and error between the simulated and
tain monthly precipitation, using a temperature index-basedMODIS-derived snow cover pixels in the basin are computed
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for model simulation with initial arbitrary value of the snow- ing snow layer or soil, and evaporation/sublimation at the
fall correction factor. The objective function is defined to at- snow surface.
tain the least cumulative error on discharge and snow cover The basic model process (Wang et al., 2009a) begins with
pixels. Model is re-executed by altering the snowfall correc-delineation of the basin and sub-basins using the Pfafstet-
tion factor till the minimisation of the objective function is ter scheme (Verdin and Verdin, 1999), division of sub-basins
achieved. The corrected snowfall obtained following this ap-into a number of flow intervals based on time lag, prescrip-
proach is regarded as the snowfall that would have likely oc-tion of all external parameters (e.g. land use, soil type, hills-
curred, given the physics of the model. The study basin is thdope properties, and vegetation parameters), and meteorolog-
humid Yagisawa Basin of the Upper Tone River in northeastical forcing including precipitation on each model grid. Wa-
Japan, where water use in spring is completely dependerter, energy, and C&Xluxes are computed on each grid. Each
on snowmelt discharge since contribution of ground watergrid maintains its own prognostic snow properties (snow wa-
to spring discharge is zero. Water supply from this basin inter equivalent, snow depth, snow temperature, snow density,
spring covers about 45 % of the annual water usage. Thus, i&nd ice/water content), and/or land surface temperature and
is extremely important to obtain precise water resource foresoil moisture contents. Then, a grid-hillslope scheme gener-
casts, via input of the correct snowfall amount. ates slope-driven runoff, which is routed through the river
This paper is organised as follows. Section 2 briefly network using the kinematic wave method. Overall model
discusses the materials and methods related to the hydrastructure is illustrated in Fig. 1. Details of snow processes
logic model, input and evaluation data, and an overview ofare given by Shrestha et al. (2010, 2012a), and other model
methodological framework for basin-scale snowfall correc- processes are shown by Wang et al. (2009a, b).
tion. Section 3 demonstrates how discharge and SCA simu- It has been demonstrated that the WEB-DHM-S model is
lation are improved after application of the snowfall correc- capable for accurate simulation of prognostic variables such
tion. Uncertainty attributable to other model input and modelas snow depth, snow water equivalent, snow density, snow
parameters is discussed in this section. Conclusions with resurface temperature and snowmelt runoff. This was accom-
marks on potential application of the methods are presenteglished through rigorous evaluation of the model with com-
in Sect. 4. prehensive point snow measurements at Snow Model Inter-
comparison Project (SnowMIP) sites (Shrestha et al., 2010),
the Valdai grassland (Shrestha et al., 2011), and Fraser Ex-
perimental Forest (Shrestha et al., 2012b). Moreover, a basin-

2 Materials and methods scale evaluation of the model in the Dudhkoshi region of the
Nepal Himalaya showed that its simulated spatial distribution
2.1 WEB-DHM-S model description of snow cover agreed with MODIS snow cover data to an ac-

curacy of 90% (Shrestha et al., 2012a). This demonstrates
The model used is the Water and Energy Budget-based Dishe model capability for capturing spatiotemporal variations
tributed Hydrological Model with improved snow physics in snow cover across the study area.
(WEB-DHM-S; Shrestha et al., 2010, 2012a), which was
developed by coupling the three-layer energy balance snow.2 Study area and data
scheme of the Simplified Simple Biosphere 3 model (SSiB3;
Xue et al., 2003) and the prognostic albedo scheme of th@he Yagisawa River basin (167 Kinlies in a high, steep
Biosphere Atmosphere Transfer Scheme (BATS; Yang et al.mountainous region of the Upper Tone Basin, northeast of
1997) with the Water and Energy Budget-based DistributedTokyo, Japan (Fig. 2a). The Yagisawa dam inlet is consid-
Hydrological Model (WEB-DHM; Wang et al., 2009a, b). ered the basin outlet. Yagisawa dam is an important reg-
The model runs on an hourly time step and at predefinedilator of snowmelt runoff in spring and flooding in sum-
grid size (500 m in this study). The model consists of themer. The basin typically supplies 14.27 % of the water to
three-layer snow routine, multilayer soil routine, and ground- Tone-Ara system to feed water supply to Tokyo metropoli-
water flow routine for nine land-use categories (open/forestan area. Furthermore, 14.18s1! and 2.918 Ms 1 dis-
regions) according to Simple Biosphere Model version 2charge is used for irrigation water and city water respectively
(SiB2; Sellers et al., 1996). The snow energy balance alin Gunma prefecture. The climate in this region is wet and
gorithm uses specific enthalpy as the prognostic variablehumid. February is the coldest month, with mean temperature
which includes both the internal energy of liquid water or —6°C, and August is the warmest month, with temperatures
ice and energy of phase change. Exchange of mass and eaveraging 18C. Heavy snowfall is common in winter (De-
ergy fluxes with the atmosphere occur at the surface snoveember through February), owing to a northwest monsoon
layer only, whereas conductive fluxes dominate energy andvind from the Sea of Japan. The snowmelt period is from
mass transport within underlying snow layers. The mass balMarch through June. Heavy rainfall events in summer (July
ance for each snow layer is governed by snowfall/rainfall, through October) are commonly associated with typhoons
compaction, snowmelt, runoff, infiltration into the underly- and Mei-yu frontal activity, which produce high flood risks
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Fig. 1. Overall structure of WEB-DHM-S mode{a) Division from basin to sub-basir{p) subdivision from sub-basin to flow intervals
comprising several model grid&) description of water transfer from atmosphere to rigb(andc; after Wang et al., 2009af¢l) detailed
description of vertical 3-layer energy balance snow model, for wiiids temperatureg(T') is vapour pressure &, Rsw and Ry, are
downward shortwave and longwave radiatigh,and AE are sensible and latent heats, and and« are emissivity, transmittance and
reflectance, respectively. Subscriptefers to canopyg to soil surfacesn to snow surface, ana to the reference height. Calculation of
energy fluxes and aerodynamic resistanegsrf, rc, rq andrgj) follows SiB2 (Sellers et al., 1996 and Dt are canopy drainage and
direct throughfall.H (Z ;) is enthalpy of the snow layef(;) (after Shrestha et al., 2012b).

in lower elevation regions. The dataset used is described imlata were interpolated to each model grid (508 B00 m)

the following sections and is summarized in Table 1. through the angular distance weighting (ADW) interpola-
tion method (New et al., 2000). Air temperature was inter-
2.2.1 Meteorological data polated using the detrended ADW. First, air temperature at

all AMeDAS sites was converted to a zero-elevation tem-
The atmospheric forcing data necessary to drive the modePerature, using a constant lapse rate of°G.&m*. Sec-
include air temperature, air pressure, relative humidity, windond, the ADW was applied to the detrended data. Third, after
speed, and downward shortwave and longwave radiation g€ data were interpolated to each model grid, the lapse rate
hourly time steps. Observed air temperature, wind speed, hufénd was added to each grid, based on its elevation. Then,
midity, pressure and sunshine duration data were available &h€ sunshine duration, temperature and humidity were used
hourly resolution from meteorological sites of the Automated {0 calculate the downward shortwave radiation at each grid,
Meteorological Data Acquisition System (AMeDAS), pro- using a hybrid model developed by Yang et al. (2001). Long-
vided by the Japan Meteorological Agency (JMA; Fig. 2a). Wave radiatior) at eac.h.grid was then estimated from_ te_-m—
Sunshine duration, wind speed, pressure and humiditpPerature, relative humidity, pressure and shortwave radiation,
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Table 1. Summary of dataset.

751

Data Spatial Resolution Temporal Resolution Source
DEM Grid (50 m) Fixed Japan Geographical Survey Institute
Meteorological data (Sunshine Point Hourly Automated Meteorological Data Acquisi-

duration, wind speed, relative hu-
midity, air temperature, pressure)

tion System (AMeDAS), Japanese Mete-
orological Agency (JMA)

Precipitation — Rain gauge Point Hourly AMeDAS, JMA

Soil type Vector (1:200000) Fixed Gunma Prefecture geological map

Land use Vector (100 m) Fixed Japan Geographical Survey Institute

LAI Grid (1 km) 8 day average Moderate Resolution Imaging Spectrora-

diometer (MODIS) Terra (MOD15A2)

FPAR Grid (1 km) 8 day average MODIS Terra (MOD15A2)
Snow cover Grid (500 m) 8day (maximum snow extent) MODIS Terra (MOD10A2)
Discharge Point (dam inflows)  Hourly Ministry of Land, Infrastructure, Trans-

port
and Tourism (MLIT)

BFPOE  1USCE 19OCE  I3FISOE ® (FPAR) absorbed by the green vegetation canopy as model

@ an 2%, | E 4[ L inputs. These data are 8 day composites of MOD15A2 ver-
manse {5 7L ) - ﬁ sion 5.0 products, obtained from the MODIS Terra satellite

{ E'— ‘ at 1 km spatial resolution. The soil map was processed from a

g ’ . z| § v 2 1:200000 scale Gunma Prefecture geologic map. The dom-
5 . Vegiswagasn | £ |DEM(T) inant soil type is forest soil, which covers about 60 % of the
lsiowo 75 basin. Black, high-permeability, and red soils cover approxi-

. © mately 15, 15, and 10 %, respectively. Soil static parameters
g . Z - L include saturated soil moisture content, residual soil moisture
8 'é Bt - content, saturated hydraulic conductivity for soil surface and

ViEE TR L groundwater, and van Genuchten parameterar(dn; van
o|losed ] ' Genuchten, 1980). Values of hydraulic conductivities were
§ o AMEDAS Meteordlogicd Site Y Lénégfr:;!i%;ﬂi"w“‘i;ﬁm. - given by Yang et al. (2004), and other soil parameters were
o 138°450"E 139°00"E 139°150"E 3

obtained from Food Agriculture Organisation (FAO, 2003).

Fig. 2. (a) Study area in Upper Tone River bas(b) digital eleva-

tion model (DEM); andc) land-use types of Yagisawa Basin. 2.2.3 Precipitation and discharge data

Precipitation gauge data were from meteorological sites of
using a relationship between shortwave and longwave radial® AMeDAS. AMeDAS gauges in this region are the over-
tion (Crawford and Duchon, 1999). flow tipping bucket type (JMA-RT4), with a heated reservoir
and wind shield. Observed hourly discharge data at the dam
inlet were obtained from the Ministry of Land, Infrastructure,
Transport and Tourism, Japan.

Digital elevation model (DEM) data at 50m resolution

(Fig. 2b) and land-use data at 100 m resolution were ob2.2.4 MODIS snow cover data

tained from the Japan Geographical Survey Institute. Basin

elevation ranges from about 740m to 2140 m, with meanThe remotely sensed snow cover data used are from the 8 day
1285m. Grid slopes vary from°3o 37, with mean 24. maximum snow extent dataset (MOD10A2) of MODIS,
The land-use data were reclassified according to SiB2 cataboard the Terra satellite. Tile h29V05 covered the entire
egories (Sellers et al., 1996) with broadleaf deciduous treestudy area. MOD10A2 depicts the maximum snow cover
being the dominant type (about 96 % of the basin; Fig. 2c).extent over an 8day period at 500 m resolution, which is
Static vegetation parameters, including morphological, opti-derived from daily snow cover products (MOD10A1) over
cal and physiological properties for those SiB2 categorizedsuch periods. MODIS 8day product represents the maxi-
vegetations, were defined following Sellers et al. (1996). Wemum extent of snow cover over eight days, which effec-
used dynamic vegetation parameters such as leaf area itively provides a temporal filter of MODIS daily data min-
dex (LAI) and fraction of photosynthetically active radiation imising cloud coverage. For forested regions, the normalized

2.2.2 DEM, land use and soil data
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where Pgyrig (z) is corrected precipitation (m) at elevation
Grid based model Input z (m), Pgaugdzi) is observed precipitation for gaugeat
1. Meteorological data . . . .
(F.T S LW WS.Rif elevationz; (m), W; is the angular distance weight factor
3. LAI/FPAR for gaugei, ng is the total number of nearest-neighbour
WEB-DHM-S gauges contributing to the grid point during interpolation,
Distributed Hydrological Model . . .
e and Cisnow/ Cirain IS @ calibration parameter (m) for oro-
se Model Output : raphic correction of snowfall/rainfall. Following New et
v ] [ itags Jnem ] | omeomer grap d

al. (2000), for a grid point value, the weight factdv;( for

rved
arge
gaugei, out of a total of ng contributing gauge stations, is

Discharge Error
Qg =[1-NSE+abs(RVE)]

Snow pixel Error
Serr™ (Mo ave*Mug ave)

{Csnow/rain] Spatial Dismbuxi;n using ADW with Z Wk [1 - COS(G]( - ei )]
Orographic Correction factor (C;) % .
fi,h.\’«r—%[ir"m o W 1m0 C s vy ] Wi = wj 1 + 1 ;é k (2)
inimize Error No ‘Zwl"' h ' J 1 Zwk
Qi #(1-0) Sy, k

where the position of th&h gauge is defined in terms of its

distancex; and its angle to north;, relative to the specified

Optimized Cypgy/cain)
Corrected Py

]

grid point; w; is the distance weight.
_ _ _ The correction factor is defined according to the precipi-
Fig. 3. Overview of methodological framework. tation phase(frain for rainfall andCisnow for snowfall). Ear-

lier studies in the region show that rainfall-induced discharge
matched well the observed flood peaks (Yang et al., 2004;
Wang et al., 2009b). The correction factor for rainfall is not
sensitive in the region, and thus we assurfiggl, to be zero.

owever, Csain can be calibrated for basins where rainfall
distribution is sensitive in the snow season.

For model execution, initial conditions for soil mois-
ture and ground water storage were attained by running the
model 100 number of time until hydrologic equilibrium was
reached. The equilibrium condition is defined by setting the
value of relative change (between two runs) in soil mois-
The overall methodological framework is depicted in Fig. 3. ture and ground water storage to 0.1%. Values for model
All time-variant input data (downward longwave and short- Parameters were taken from previous studies in the Upper
wave radiation, wind speed, air temperature, relative humid-Tone region, as indicated in Table 2. After simulation of
ity, LAl and FPAR at 1 h temporal resolution) and static data model processes with initial arbitrary value Gfnow, error
(DEM, soil, land use) were prepared on a 500 m grid. First,petween observed and simulated discharge at the basin out-
interpo|ated gr|dded air temperaturglér{d) were used to de- let and error between MODIS-derived and simulated snow
fine precipitation phase. We used® as the static threshold cover pixels were computed. Tli&@snow Was then optimised
air temperatureZ,), below which all precipitation was as- Using the SCE-UA automatic search algorithm, which min-
sumed to be snowfall and above which it was assumed tdmises the multi-criterion objective functioZ), including
be rainfall. The gauge precipitation was then interpolated tothe weighted components of discharge er@g() and snow
the grid using the ADW (New et al., 2000; Hofstra and New, Pixel error Serr). The objective function is expressed by
2_009) interpolation me_thod, taking mtt_) _acgount the eleva_l-ZErrZOl_QErr+ (1—a).Serr )
tion dependent correction factor. Precipitation at each grid
was estimated as the weighted sum of neighbouring precipwhereq is the weight. The value af should be given in such
itation gauges, with the weighted elevation-dependent cora way that both error components give the equal weights to
rection factor considering the elevations of all neighbouringthe total error so that none of the error components overrule
gauges used in ADW interpolation. This is described as fol-each other. The is defined by
lows.

difference vegetation index (NDVI) and normalized differ-
ence snow index (NDSI) were jointly used to discriminate
snow-free and snow covered forests, using the algorith
of Klein et al. (1998). All MODIS datasets were acquired
from the NASA Earth Observing System Data and Infor-
mation System (EOSDIShttp://reverb.echo.nasa.gowand
processed by the MODIS Reprojection Tool (MRT, 2011).

2.3 Methodology for snowfall correction

o = Serr
(Serr + Qenr)
:| For computation of discharge error, Nash-Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) and relative volume
error (RVE) were used. Discharge err@gy) is expressed

by
Cfrain(Tgrid > Tin)
Crsnow( Tgrid < Tih) @ Qgr=(1-NSE + abstRVE) ®)

for, 0< (Sem, Qer) <1 4)

1 9
Pyiid(2) = 15— [Z Pgaugdzi) * Wi * [1+ (2 — z) * C]
Wi i=1

i=1
for Ci= {
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Table 2. Model parameters used.

Model Parameters

Value Source

From Literature

Snow albedo in visible spectrum

Snow albedo in near infra red spectrum
Saturated hydraulic conductivity for snow surface
Saturated hydraulic conductivity for soil surface
Saturated hydraulic conductivity for ground water
Threshold temperature for snow/rain separation
Saturated volumetric moisture content

0.85 Shrestha et al. (2012a)
0.65 Yang etal. (1997)
367hh Shrestha et al. (2012a)
0.05Thh Yang et al. (2004)
0.0017thh Yang et al. (2004)
°Q.0 this study

0.51 FAO (2003)

Residual volumetric moisture content 0.17 FAO (2003)
Van Genuchten parameter | 0.01746  FAO (2003)
Van Genuchten parameter)( 1.413 FAO (2003)
Optimised

Snowfall correction factor@sspow) 0.0007nt1  Optimisation

NSE and RVE are defined as These errors are calculated by performing a grid-to-grid anal-

ysis, to examine whether the MODIS and model simulation

Y 0.2 agree on whether the grid point is covered by snow. The
Z (Qoi — Qs) ) :
i model simulates the amount of snow (in snow depth or wa-
NSE=1-———— (6) . . N .
N 2 ter equivalent) on each grid. The grid is considered snow-
Z (Qoi — Qo) covered for snow depth greater than a threshold value. The
i=1 MODIS snow cover data show only if the grid is covered by
snow or land, or is classified as missing information (mostly
N caused by clouds). A 2 2 confusion matrix (Table 3) was
> (Qs — Qoi) used to depict model performance, in which four categories
RVE== 7 were defined for MODIS and simulated snow cover grids:
% Ooi A snow for both MODIS and modeB snow for the model
= o but no snow for MODISC snow for MODIS but no snow

for model; andD no snow for either MODIS or model.
whereQq; is observed discharge at hayrQg is simulated 7o measures model overestimation of snow-covered grids
discharge, and), is the average of observed discharge over (model misclassification of land as snow), alge quanti-
the simulation (calibration/verification) period of compari- fies model underestimation of such grids (model misclassifi-

son (N hours). NSE determines the relative magnitude ofcation of snow as landoe and Myg are defined as
residual variance relative to measured data variance. RVE

measures the average tendency of simulated values to b B

larger or smaller than observed ones. Positive values indicate °c~ A+ B+ C + D (10)
overestimation bias and negative values indicate underesti-

mation bias. NSE equal to 1 and RVE equal to zero corre- C

spond to perfect matching between simulated and observef/UE = A+B+C+D (11)
discharge.

Serr IS expressed by combining the model overestima-
tion error (Moe ave) and model underestimation error

(Mue_avc), averaged over the period of comparisavy (3 Results and discussion

days). The 4 yr hydrometeorological data were prepared for model
Serr = Moe avG+ MUE AVG (8) simulation for October 2000-September 2004. As discussed
- - earlier, error for the multi-criteria objective function (combi-
nation of discharge and snow pixel errors) was minimised
%MOE %’: Mue us_ing the SCE-UA search algorithm, _for which an opti-
P ] mised value ofCtsnow Was obtained during a 1yr calibra-
Mo _nve= N, » Mue_ave = N, (©) tion period (2002-2003). The year 2002-2003 was chosen
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Table 3. Confusion matrix for MODIS-derived and model- Calibration Period

a) Cfsnow =0.0

simulated SCAs for snow seasons of October 2000 through Septem 159 ] Year 2003 - Smulated

"Eloo— — Observed
ber 2004. A, B, C, and D represent number of grids in a particular 3 £ © A A WNM J\”
classification category. ﬁ 287 WVMWMWMMW= ‘

b). Cfsnow = 0.0007

140
MODIS: Snow MODIS: No Snow g}gg: “
T 80
60 1 & ¢ |
MODEL: Snow A B g Wm M“MMMM
Mmu‘ﬂ e ‘ ‘ ‘ ‘ ' :

MODEL: No Snow c D 0

harg

Di

)

Discharge (i

-Mar 16-Mar 31-Mar 15-Apr 30-Apr 15-May 30-May 14-dun 29-dun
Validation Period

c) Cfsnow = 0. O

140

120 4 Year 2004

i W\J
as the calibration year because of the longer snow cover pe-£ 40} M 5},,3;}@%“%)\% ‘N\'MQLM
riod and higher snowfall amount. The optimis€gnow Was 8 %! 1) o= 00007 ‘

0.0007 nt1, which indicated that the average snowfall would %ﬁg
o 80

likely be 1.7 times that for an elevation difference of 1km. £ e/
The optimised or calibrate@isnow Was used to perform alti- £ 2]

tude correction of snowfall for 3 yr (2000-2001, 2001-2002 0, Vear 2002 agmae=oy

and 2003-2004), for validation of the modelling approach. “5138} J‘l (,

Model performance indicators for discharge (NSE and RVE) 3 :z WM“ “ WWMMWMWW W
and snow cover¥oe ave and Mue_avc) were determined DME ). Clonow = 00007

for the validation period. These results were presented alongg 1

with those for simulations witiCisnow = 0, to ascertain im-  § %

provements in simulation of discharge and SCA. Further, & % jussu

q) Cfsnow =0.0

model sensitivity owing to uncertainty in other model input 37 Year 2001
“E 100 1

and model parameters were analysed. g o] . i g
§ gg:u o .l il L v “WJM}LW\WMWMMMM‘

3.1 Discharge simulation - h. Cisnow= 00007

i ol
In the study region, snowfall normally accumulates from mid §§ il i E
November through mid-March, and snowpack begins melt- & % e : : : ‘ ‘

f T T
1-Mar 16-Mar 31-Mar 15-Apr 30-Apr 15-May 30-May 14-dun 29-Jur

ing at the end of March. This produces remarkable diur-
nal variation of snowmelt discharge in the river. Snowmelt- rig 4 observed and simulated hourly discharges at basin out-
driven discharge continues until mid June. Simulated vs. ob1et from March through June in calibration (2003) and valida-
served hourly discharges at the basin outlet are shown ifion (2001, 2002 and 2004) periods, for optimis€gngw and

Fig. 4a and b for March through June in calibration year Cisnow=0.

2003. These were for zero (no snowfall correction) and opti-

mised values o€ssnow-

A slow increase in discharge was seen for 1-11 April, aftermid June) greatly improved. Overall, the observed discharge
which there was a strong and continuous increase of observecurve was reasonably reproduced by the model, with NSE of
discharge. Cold days on 23-26 April led to small discharge0.66 and RVE of-0.06 (Table 4).
rates. Since snowpack amount had declined substantially by For validation, the model was run using optimiségnow
the beginning of June, the influence of strong melt eventsor 2001, 2002 and 2004. Observed and simulated hourly dis-
decreased. Correspondingly, the daily mean discharge rateharges for those years are shown for this optimised (Fig. 4d,
showed less variability and diurnal fluctuations decreased irf and h) and zer@isnow (Fig. 4c, € and g). For zerGssnow,
amplitude. Simulated hydrographs matched well the diurnalthe volume deviation was about 50 %, with poor NSE for
variation of observed discharge from the beginning of meltall 3 yr. For the optimised value, the diurnal variation of dis-
season (late March) to the beginning of May, €gnow = 0. charge was well simulated by the model, with NSEs of 0.62,
On some dates, the model was unable to capture the di9.61 and 0.52 in 2004, 2002 and 2001, respectively. RVEs
urnal variation of discharge well (e.g. 20-22 April), which for discharge were about0.07 in 2004 and-0.09 in 2002
may be due to less available energy estimation in the model(Table 4). The simulated hydrograph for 2001 showed re-
In May, the discharge was largely underestimated, becausmarkable underestimation of discharge (about 15%). The
of less snowfall in winter. The volume deviation for dis- large discrepancies were observed from 3rd week of May
charge underestimation was 39 % (RVE8.39), with poor  to mid June, mainly due to underestimation of snowfall in
NSE (—0.03). After optimisation for snowfall correction, dis- winter. This implies that the lack of snowfall input was not
charge simulation in late melt season (beginning of May tomuch compensated by the optimis€gnow. However, the
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Table 4. Discharge error components (NSE and RVE) for calibration and validation periods (after and before correction).

NSE RVE
Year Correction No Correction Correction No Correction  Remarks
(Ctsnow= 0.0007 nT'1) (Ctsnow=0)  (Ctsnow=0.00071T1)  (Ctsnow=0)
2003 0.66 —-0.30 —0.06 -0.39 Calibration
2004 0.62 —-0.32 —0.07 —-0.44 Validation
2002 0.61 0.05 —0.09 —0.50 Validation
2001 0.52 -0.19 -0.15 —0.50 Validation
100 , . 100 : During the calibration period (2002-2003), simulated
a) No correction R°=0.32 b) After correction R2-(g . . . :
g0 | om0 g | (i 0.0007) SCAs were underestimated at high elevations during early
;-f - accumulation and late melt seasons (after 1 May), for model
B 60 60 %o 8o simulation with zeraCisnow (Fig. 6a). For optimise@tsnow,
% 2 a8 SCA was overestimated in late melt season. Table 5 summa-
T 40 401 rizes a pixel-by-pixel comparison of simulated and MODIS
& 0 nl o ® SCAs, showing the ratio of pixels at which the simulated and
MODIS snow cover agreed and disagreed (underprediction is
0 ‘ 0 ‘ ‘ ‘ ‘ when the model pixel was snow-free but MODIS was snow
0 2 4 6 8 100 0 20 4 6 8 10 covered, and overprediction was vice versa), averaged over
Observed Bischarge (Daily time scale) the comparison period. Average model underestimation error

Fig. 5. Scatterplots of observed and simulated discharges at dailfMUE_ave) improved from 0.15 for zer@snow to 0.04 for
time step for 2001-2004. Pang) shows results foCispow=0,  OptimisedCisnow. AverageMog_ave showed opposite char-
and pane(b) those for optimise@tsnow- acteristics with regard tdye_ave, as expected. In the vali-

dation period after snowfall correctioMog_avc was 0.098,

0.135 and 0.10 in 2004, 2002 and 2001, respectively (Ta-
simulation of different discharge regimes in the 4yr (on- ble 5). Myg_avc was from 0.014 to 0.021. Snow pixel under-
set of strong snowmelt discharge) was well replicated byestimation error on 17 May was the highest (0.12) in 2001
the model. To illustrate the scatter of observed and simu-among all years which supported the clarification of large
lated discharges, scatterplots of simulated versus observe®RVE in discharge simulation due to underestimation of win-
discharge in the 4yr are shown in Fig. 5a and b, for sim-ter snowfall. For simulations without correction, overestima-
ulations with and without snowfall correction. These plots tion error was nearly zero because of early snowmelt, with
indicate that the discharge underestimation was greatly imunderestimation error from 0.06 (2004 and 2002) to 0.10
proved, and the correlation coefficient increased from 0.32(2001).

to 0.85 after snowfall correction. It is interesting that the model generally overestimated
) ) snow pixels for corrected snowfall; i.e. tot§g,, increased
3.2 Snow covered area simulation with respect to error foiCsnow= 0. The optimisation of

f th ial distributi f derived f Cisnow against SCA could only reduce the error, but it would
Mapl)jslo t zsgatla ('jStIr' ut|0r|1 0 Sgo(;N cover aerive ro(rjn,definitely produce large error in the discharge components.
_O S .an I'kt) at model zt EeoT'Ctel'd ates are gre];sent_e 'Similarly, the optimisation against discharge would only re-
Fig. 6 (a: calibration period; b—d: validation period), for Sim- 4, ,ce discharge error, but it would largely overestimate SCA
ulations with and W'th.OUt snowfall correction. These repre-;, i season, Thus, the multi-criteria objective function
seannow agclu mulat|on_ ar:d snowmellt dphajes of the Sno‘(’j‘(/'vas needed to reach a tradeoff between the two error compo-
pic A mode —ohutput plc)j(ed was cor:S|d ere snow-cloyere nents. Although discharge was well simulated by use of the
when show e.zpt excee Ie or equa ed ffcm (e.9. Klein ar‘%ptimal correction factor, there was considerable deteriora-
Barnett, 2003; Wang et al., 2008). Model output was repre-;q, ot model performance regarding overestimation of snow
sented as the maximum snow extent over 8 day periods, Colsy g\ during melt season. There may be two basic contri-
responding 1 the da.tes., of the MODIS dataset. '_I'he met,ho‘gutions to this error. The first is uncertainty of the MODIS
gsed herg d'q r_10t' assimilate snow covered area pixel by p'Xeldataset algorithm in mapping snow cover in forested regions
mstead', It mlnlmlsed thg error petweeh MOPIS and rnOdeIduring melt season. Hall et al. (2001) stated that snow map-
simulations during multi-objective optimisation @fsnow. ing performance error of the MODIS daily product for such

Thus, the model might not r_1ecessari|y reproduce the sam egions was the largest(15%) of all land cover types.
SCA as MODIS after correction.
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Table 5.Snow covered pixel error componendéde_avc andMyg_ave) for calibration and validation periods (after and before correction).

Moe_ave Mue_avG
Year Correction No Correction Correction No Correction Remarks
(Ctsnow= 0.0007 nT'1) (Crsnow=0)  (Ctsnow=0.0007nT1)  (Ctenow=0)
2003 0.1186 0.004 0.0252 0.1187 Calibration
2004 0.0983 0.007 0.0140 0.06 Validation
2002 0.1352 0.007 0.0211 0.06 Validation
2001 0.1007 0.007 0.0216 0.10 Validation

Table 6. Total snowfall during October—June of 2001-2004 (before 3.3 Spatial distribution of snowfall

and after snowfall correction and percentage increase with respect

to uncorrected value). Figure 7 portrays the spatial distribution of total snowfall be-
fore and after correction, for the 4 yr of the study period. To-
Snowfall (mm) tal snowfall was calculated as the sum of snow accumula-
tion from October through May. The results for z&fgnow
clearly show a region of snowfall greater than 800 mm in the
2001 756 1124 48.67 northwest part of the basin. The year 2003 had heavy snow-

Year Before correction After correction % increase

;88; ;gg Egg jg'gg fall, so the 800 mm contour moved toward lower elevations.
2004 297 1077 48.14 Basin-average total snowfall was 756, 786, 850 and 727 mm

over 2001-2004 (Table 6). Monthly analysis of total snowfall
illustrated that the basin had three-peak total snowfall in 2003

Likewise, Simic et al. (2004) reported that MODIS map- (November, January an_d March with the highest in January)
ping accuracies were poorest in evergreen forests, with aﬁ‘nd one-peak snowfall in 2001 (February), 2002 (February)

error rate of 20 % during snowmelt. In Austria, Parajka and@nd 2004 (January). _
Bloschl (2006) reported a mean misclassification error for the, FO" OPtimisedCsnow, the corrected total snowfall varied
shrub class around 10%, and for pastures and forest arourf®™ ~800mm at low elevations (near the basin outlet) to
6%. Parajka et al. (2012) addressed MODIS snow-coverr000 mm gt high elevations of the upper region of basin. Af-
mapping accuracy in a forested region, finding that most ofier correction, the 800 mm cqntour for uncorrected snowfall
the mapping errors were at the end of snowmelt season fopecame about 1200 mm. Basin-average corrected total snow-

patchy and shallow depths (mean snow depth typically Iesgalls for 2001-2004 were 1124,_1169, 1263 and 1077 mm.
than 1015 cm). The model outputs snow on the ground Sur:I'hese values are about 49 % higher than uncorrected ones

face, whereas MODIS shows a satellite view of snow in the(T@ble 6). Through our efficient calibration and validation
visible spectrum, as a mosaic of the vegetation (NDVI) ano|appr_oaches, the spatial dlstr|but[ons of sno_vvfall estllmated
snow (NDSI) algorithms. The diurnal variation of observed _hereln can be taken as reference in hydrologic modelling and

discharge clearly showed that there must have been snow i the correction of radar data and reanalysis datasets in the
high-elevation areas during late May, which MODIS was un- €90

able to capture. The second contribution to the error may b
attributed to noise during interpolation of precipitation, for
model grids distant from gauges and for very weak correla-3
tion of snowfall between gauges.

A comprehensive study should be made in the future, t0pegpite the precipitation correction, there may be uncer-
ascertain the reasons for misclassification of snow pixels byainties in other model input, which arise from observa-
the current MODIS snow mapping algorithm. In general, thejons, observation-based meteorological models, and remote-
model was able to simulate seasonal and interannual Va”abi%ensing products. To obtain insight regarding the response
ity of snow cover relative to MODIS, including light snow  f gischarge and SCA simulations to these uncertainties, we
accumulation in mid-November, full snow coverage from herformed sensitivity analyses of other inputs. This analy-
December through April, and persistence of snow at highgjs was done for 2003, which was referred to as the control
elevations in May. run. Several simulations were made for a prescribed range

of variations (-10 %) of model input (shortwave radiation,
wind speed, air temperature, and LAI/FPAR). Longwave ra-
diation is a function of air temperature, so its variation was

%.4 Model sensitivity

4.1 Sensitivity to uncertainties in model input
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Calibration Period (2002-2003) Spatial Distribution of Snowfall (mm)
(a) 2002 — 2003 Before snowfall correction After snowfall correction

240ct. 25Nov. 23Apr. 1May 9May 17 May

Y e
e, vlrug ot edrede

Validation Period (2003-2004 and 2000-2002)

(b) 2003 — 2004
17 Nov. 11 Dec. 29Mar. 22 Apr. 30Apr. 24 May

MODIS !@‘#‘*Eﬁé T
it et

(c) 2001 — 2002
17Nov. 11Dec. 15Apr. 1May 9May 17 May

h, ' .
Simulated “E"%' . P‘-__ a
(BeforeCorr.) oo
e o Opftugtg e PR 2
(After Corr.) E- = -

(d) 2000 — 2001

16 Nov. 2Dec. 15Apr. 1May 9May 17May '

- -
MODIS ﬁ*‘&ﬁ ;lE-f ; F|g._7. Spatial distribution of sn_owfa_ll befor_e and after snowfall cor-
i rection, 2001-2004. Contour lines in the figure represents the value
Smulated _ P %3 A B of snowfall.
(BeforeCorr). = ! Sl
(ﬂg“g,??) o 3‘! Tt to total precipitation normally decreases, but if that tempera-

ture is below freezing during the entire snowfall period, this
Legend: Land , s Snow , e Cloud ratio will have much less sensitivity. Since incoming long-
) . : e wave radiation was treated as a function of air temperature,
Fig. 6. Comparison of simulated spatial distribution of snow cover

with MODIS snow cover pixels, in calibration (2003) and validation the higher that temperature, the greater the longwave radi-

(2004, 2002 and 2001) periods, for simulations with and without 810N and vice versa. Howevgr, variation of air temperature
correction for snowfall. results in very slight change in longwave radiation. For in-

stance, a 10 % change of temperature in the study area would

cause 0.5 to 2% variation in longwave radiation, depending
not considered. The discharge and snow pixel error compoen season. A small increase in discharge in early April was
nents were analysed for each model run. simulated for a 10 % increase in temperature, causing NSE

It was speculated that decreased shortwave radiation into decline to 0.6315 and an RVE ef0.10. Mog_avc de-

creased the overestimation error of snow pixels to 0.1853¢reased to 0.0966, buye ave increased to 0.0357. The
and reduced underestimation error to 0.0108, giving an NSHKlecrease in air temperature caused a late snowmelt, owing
of 0.53 and RVE of-0.03. For increased shortwave radi- to a small decrease of discharge in early April. This caused
ation, discharge was slightly high in early May and was an increase o#oe_avc and decrease dffye_avc (Table 7).
slightly underestimated in mid Jun®og_avG andMye_avc Variation in dynamic vegetation parameters such as LAl may
were 0.07 and 0.05, with NSE of 0.57 and RVE-d.11 (Ta-  affect the water/snow holding capacity of the canopy at point
ble 7). With increase of air temperature, the ratio of snowfall scale. Since WEB-DHM-S inherited SiB2 (Sellers et al.,

2200
21090
2009
14900
1800
1700
1600
1500
1400
1300
1200
1100
1000
&S00
BGO
700
600
500
400
360
200
100

www.hydrol-earth-syst-sci.net/18/747/2014/ Hydrol. Earth Syst. Sci., 18, 74764, 2014



758 M. Shrestha et al.: Correcting basin-scale snowfall in a mountainous basin

Table 7. Model sensitivity to uncertainty in model input, 2002— Table 8. Model sensitivity to uncertainty in precipitation phase
2003. SW, Tair, WS and LAI are shortwave radiation, air temper- (threshold air temperature) and albedo in visible spectrum, 2002—

ature, wind speed and leaf area index respectively. 2003.

Description ~ NSE  abs(RVE) Mog avc  MuE AVG Description NSE abs(RVE) Mo avc MuE_avG
Control  0.6555 0.06 0.1187 0.0252 Tih=0.0°C 0.66 0.06 0.1187 0.0252

+10% SW  0.57 0.11 0.075 0.05 f;h=05°C 063  0.05 0.1361 0.0179

-10% SW  0.53 0.03 0.1853 0.0108 Tih=1.0°C 0.60 0.04 0.1518 0.0146

+10%7Ty, 0.6315  0.1016 0.0966 0.0357 Tin=1.5°C 0.57 0.03 0.1679 0.0129

—10%Ty 0.6141 0.052 0.1492 0.0172 Tih=2.0°C 0.53 0.03 0.1818 0.0120

+10% WS 0.6562  0.0646 0.1168 0.0256 Albedo=0.80 0.63 0.08 0.0933 0.04

—10% WS 0.6514 0.0676 0.1197 0.0241 Albedo=0.90 0.60 0.05 0.1644 0.015

+10% LAl 0.6538  0.0524 0.1223 0.0252

—10% LAl  0.6502 0.078 0.1148 0.0245

predefined control value (0.85) of visible albedo to the arbi-
trary values 0.80 and 0.90. Both discharge and snow pixel
1996) as the basic land surface model, that holding capacerrors increased with the value of albedo (Table 8). For de-
ity was estimated by 0.004 LAl for a canopy fully covered ~ creased albedo, discharge error slightly worsened, but snow
by snow. For basin Sca|e, LAl variation has neg||g|b|e im- piXel error improved. NonetheleSS, in both cases, total error
pact on the simulation of discharge and SCA, as shown irexceeded that of the control run. Overall, these results show
Table 7. Change in wind speed affects the computation othat the optimise@’tsnow 0f the control run was the best value
turbulent fluxes. As expected, this change did not greatly affor minimisation of errors in discharge and snow cover.
fect discharge, and thus showed the least sensitivity. There
was greater sensitivity to #10 % change in shortwave ra-
diation among all inputs, since it directly controls available
energy.

4 Conclusions

This study focused on correction and estimation of the spa-
tial distribution of snowfall. We used the spatially distributed
multilayer water and energy balance-based snowmelt model
- . (WEB-DHM-S) and remotely sensed snow cover data from
A large number of uncertainties may exist in model Param-p\1op|s aboard the Terra satellite, following multi-objective

eters (e.g. snow albedo, roughnes_s length for snow _Surfac%ptimisation of altitude-based snowfall correction factor
threshold temperature for snow/rain, and morphological pa-

L . . Cisnow Within the framework of the SCE-UA automatic
rameters of the canopy), initial conditions, and soil proper-

o5 (X L 1997 A h hreshol earch algorithm. The minimum objective function was
ties (Xue et a., 13 )- xmong these parameters, t resnoig chieved by minimising the difference between observed and
temperature is critically important for discharge generation

. '+ determi h " ¢ rainfall and wiall i 'simulated discharge at the basin outlet and the difference be-
since It determines the proportions ot raintalt and ShOWIall Ny e en MODIS-derived and simulated snow-covered pixels.
total precipitation. Its effect is dominant in lower and mor

e . . )
. . o L '~ The system was applied to Yagisawa Basin of the Upper Tone
humid elevations, but diminishes gradually with increasing River)i/n Japan PP g PP

elevation. Slrplélastlolnz Wler5e ca;rlgg o\l;\;.fﬁr.threshqld temper- rpe optimisation ofCtsnow Was carried out for the snow

iltglrzesagg)R(\)/E aécréa{sea ffgm 0 6 6 t'(t) d%cge;%nog?% season 2002—-2003. For the minimum errors in discharge and
e SCA simulation, optimumC was 0.0007 m*. To as-

—0.03 (see Table 8). Model overestimation increased from P fsnow

. . sess improvement in model simulation over that with no
0.1187 t0 0.1818, whereas underestimation error showed Iesbsnowfallpcorrection the model was also run oy = 0
i now — VY.

variability. It is evident that with the increase &, Cisnow  NSE improved from-0.03 to 0.66, and RVE from-0.39 to
decregsis grngovirestlmitlor er_rcr)]r can be, reducedf. We €X9.06. The snow covered pixel underestimation error greatly
ecute Ot € -UA searc agor_lt_m to Opt.'mi_é’g"ow or decreased, but overestimation error increasedCigfow =

Tin of 2°C. It was found that the minimum objective function 0.0007. The optimise@snow Was validated by model sim-
value €er) was higher than that of the control run. From the ulations for 2004, 2002 and 2001, for which discharge and
sensitivity runs,Ii, was a key parameter for simulating dis- i '

_ . SCA were well simulated. The spatial distribution of to-
charge and SCA; however, the default paramefigraf 0°C) tal snowfall was estimated in each year, and varied from
showed the best result.

o . . 1077 mm to 1260 mm. The 4yr average of basin-scale to-
We also tested the sensitivity of model simulation to a

o .~ “tal snowfall for optimisedCtsnow Was 1160 mm, which was
change of fresh snow albedo, which influences net radiatio bout 1.49 times that for zeCsnou:

flux. The effect of this albedo was examined by changing the

3.4.2 Sensitivity to uncertainties in model parameters
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