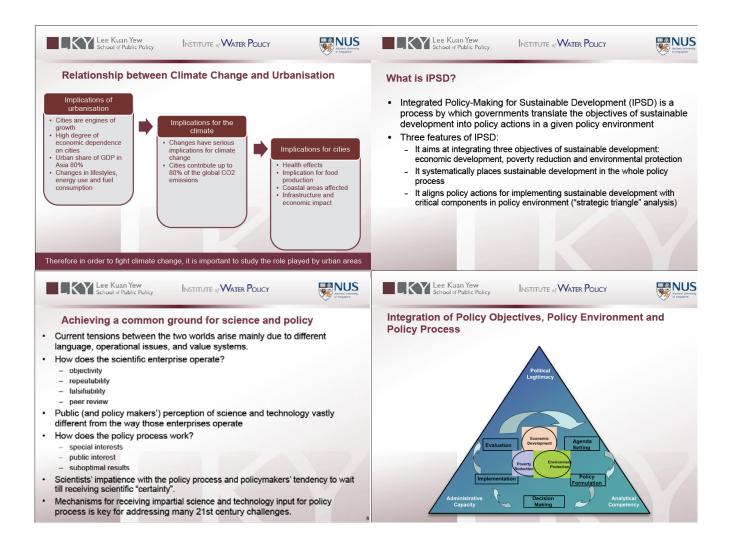
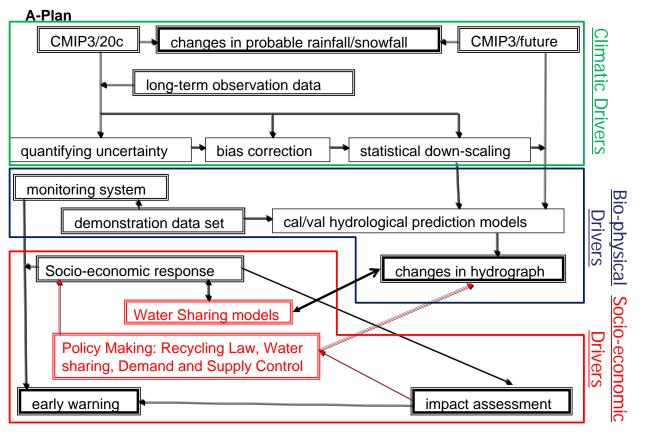
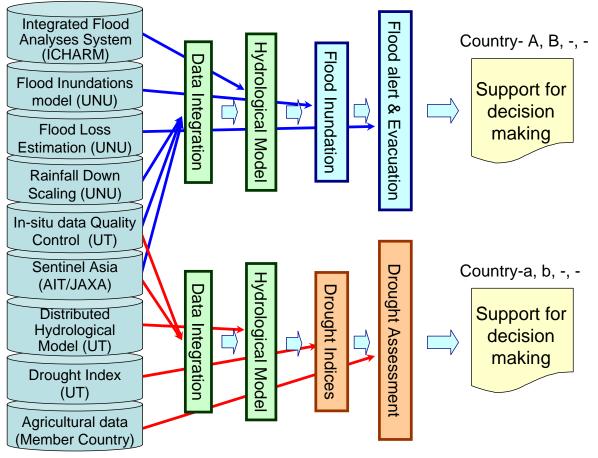
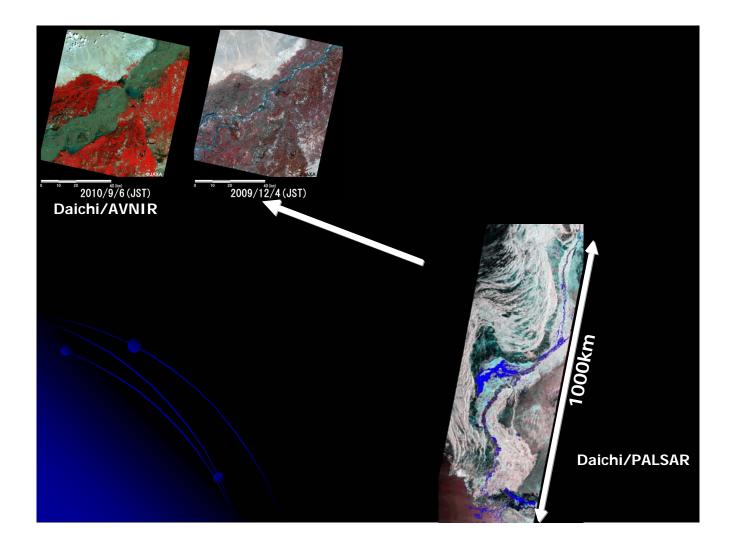

IGWCO COP Planning Meeting in Tokyo GEOSS Asian Water Cycle Initiative (AWCI)

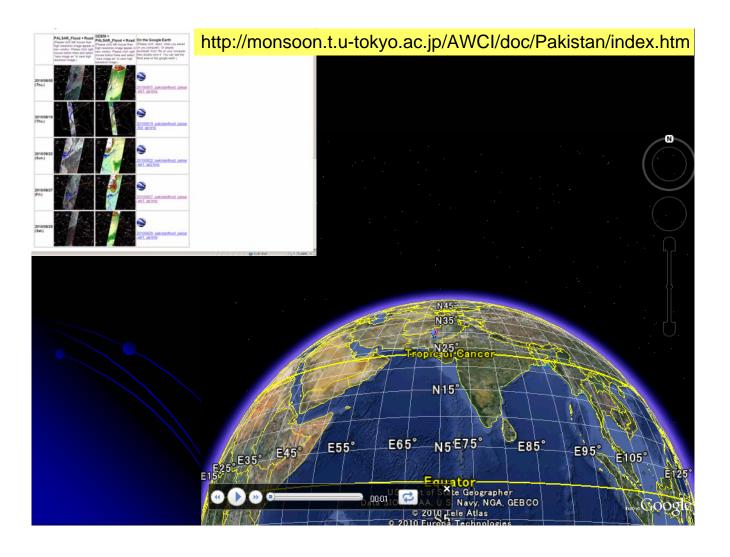

Summary Report including Updates of the Demonstration Projects

11 Year History of GEOSS Water 5 Year History of GEOSS/AWCI


2000 – Integrated Global Observing Strategy (IGOS) Water Theme Proposal			
2001 – Water Theme Approved			
2002 – Team Report Writing Team	World Summit on Sustainable Development		
2003 – Preparation for "Integrated Global Water Cycle Observation (IGWCO)"	(WSSD) Ad-hoc (GEO)		
2004 – IGWCO Team Report	Preparation for 10-year Impleme	entation Plan	
2005 – 1 st IGWCO in Tokyo	GEO/GEOSS Asian Water Cy		
2006 – 2 nd IGWCO in Paris		1 st Sump. in Tokyo 1 st TTM in Bangkok	
2007 – 3 rd IGWCO in DC	1 st GEOSS AP in Tokyo	2 nd Simpin Tokyo 1 st ICG in Bali	
2008 – 4 th IGWCO in Geneva	2 nd GEOSS AP in Tokyo	3 rd Simp. in Beppu 2 nd ICG in Tokyo	
2009 – 5 th IGWCO in Kyoto	3 rd GEOSS AP in Kyoto	3 rd ICG in Beijing 4 th ICG in Kyoto	
2010 – 6 th IGWCO in New York	4 th GEOSS AP in Bali 5 th EO Summit in Beijing	5 th ICG in Tókyo 6 th ICG in Bali 7 th ICG in Tokyo	




Implementation Planning


Question 1: What should be added, removed and modified?

Training Modules Training Course

Three steps

- 1. Evaluation of models -> selecting suitable ones for the region
- 2. Downloading model precipitation output of selected models and gap-filling
- Bias correction of historical simulation precipitation output and future projection precipitation output of selected models – using observed precipitation data

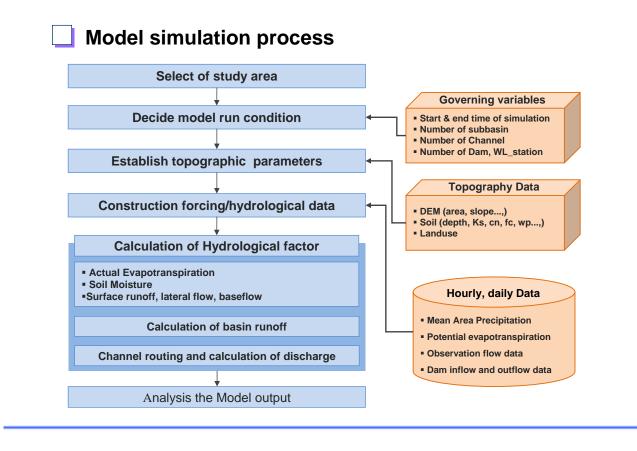
Section 1

- 1. Introduction of the WEB-DHM hydrological model;
- 2. How to run the hydrological model with longterm forcing data (past and future);
- 3. How to analyze the simulated long-term discharge, to identify the occurrence of floods and droughts.

Section 2

Interactive discussions between the CCAA participants with our UT team (*Wang, Tsujimoto, Patricia, Shrestha, Thanda, Slamet*).

Contents


eneral approaches for climate change impact assessment

Incertainties of climate change impact assessment

ME-based climate change impact assessment

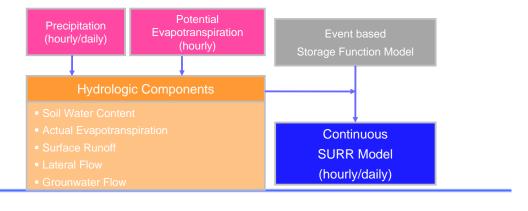
bncluding remarks

Outline of model Case Study

Hydrologic Model Theory - Macroscale

Global Hydrologic Model

- The VIC(Variable Infiltration Capacity) model is soil vegetation atmospheric transfer scheme that considers both energy and water balances
- A grid-based macro-scale model that is usually implemented at various spatial scales from 1/8 °to 2°
- Widely used for analyzing the variations of water resources due to climate change


	Grid Cell Vegetation Coverage	River Network Routing Scheme for VIC-nL
Cell Energy and Moisture Fluxes		I. Runoff and Baseflow Routed to Edge of Grid Cell
P//// R R		eseñov
	Variable Infiltration Curve	
Layer 1		
Layer 2	Fractional Area B W _U =W ₀ +W ₁ Baseflow Curve	II. Flow Routed Through Flow Network to Outlet
	Baseflow, B D ₅ D _n D _n	
	W 20 0 W ₃ W ₂ ¢ W ₂ ¢	Tree -

Parameter	Input Data
Basin	DEM
Forcing	Precipitation Maximum Temperature Minimum Temperature Wind Speed
Soil	Soil Properties
Vegetation	Landuse

Hydrologic Model Theory - Microscale

SURR(SEJONG University Rainfall-Runoff) Model

- Storage Function Model based Continuous Rainfall-Runoff Model
- Connection of basin and channel storage function model with Physical
 based hydrology Component calculation technique(Lee et al. 2010)
- Properties : Lumpt model based on basin
- Water balance & Channel routing
- Simulation time interval : hourly, daily
- > Available and useful both monitoring the flood & drought

