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[1] Surface fresh water is essential for life, yet we have
surpwisingly poor knowledge of the spatial and temporal
dynamics of surface freshwater discharge and changes in
storage globally. For example, we are unable o answer such
basic questions as “What is the spatial and temporal
variability of water stored on and near the surface of all
continenis 7" Furthermore, key societal issues, such as the
susceptibility of life to flood hazards, cannot be answered
with the current global, in sit networks designed to observe
river discharge at pointg but pot flooed events. The
measurements required to answer these hydrologic
questions are surface water area, the elevation of the
water surface (), its slope (i), and temporal change
({¥el). Advances in remote sensing hydrology, particularly
over the past 10 years and even more recently, have
demonsirated that these ydraulic variables can be measured
reliably from orbiting platforms. Measurements of
inundated area have been used o varying degrees of
accuracy a8 proxies for discharge but are successful only
when in situ data are available for calibration: they fail w
indicate the dynamic topegraphy of water surfaces. Radar
altimeters have a rich, multidecadal history of successfully
measuring elevations of the ocean surface and are now also

accepted as capable tools for measuring b along orbital
profiles crossing freshwater bodies. However, altimeters are
profiling tools, which, becanse of their orbital spacings,
miss too many freshwater bodies to be uwseful
hydrologically. High spatial resolution images of 600
have been observed with interferometric synthetic aperture
raclar, but the methed requires emergent vegetation 1o scatter
radar pulses back to the receiving antenna. Essentially,
existing spacehbome methods have been used to measure
components of surface water hydeaulics, but pone of the
technologies can singulardy supply the water volume and
hydraulic measurements that are needed to accurately model
the water cycle and to guide water management practices.
Instead, a combined imaging and elevation-measuring
approach is ideal as demonsivated by the Shuttle Radar
Topography Mission (SRETM), which collected images of &
at a high spatial resolution {~90 m} thus permitting the
caleulation of FHily. We sugoest that a fore satellite
concept, the Water and Terestial Elevation Recovery
migsion, will improve upon the SRTM design o permit
multitemporal mapgings of & across the world's wetlands,
floadplains, lakes, reservoirs, and rivers.
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GRACE-Based Terrestrial Freshwater Estimate
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Evaluation of global land-to-ocean fresh water discharge and evapotranspiration
using space-based observations
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ARTICLE INFOD EUMMARY
Arcici hbmary: We sstimate global fresh water discharge from lamdstosoceans () and evapatrarspiratan (ET) on
Riciwnd & May 2006 mosithly tme scales using 2 number of complimentary bydralogic data seis This estimale is possible

Renceiwind in revized Sorm I Fehnsary T0040

due 1o the new capability of measuring sceanic and land water mass changes from GRACE as well as
Accepnid 14 Way J0HEr Pa Y ng

ke space=based measuremenis af oceanic and land precipigaion [#) and oceanic evaporation. fanthly
teme series of [ show peaks in July amd [anuany, and thase of ET show peaks in March, May and August

Thiss sarmesscTipn was Tandiod by K. Qur estimates of [ amd ET are correlated with & indicating gualitatively that our estimates capiure tem-
Geregakakos, Edar-in-Chief, mirs the paral patterns of § and ET reasumabdy well Comparison of aur 0 with tes olber previous estimates based
asslstance of V. Laksami, Asseclate Edieor on ke Clobal Runcdl Dada Centre {GROC ) river gauges nebwark shaws that our maximum peakin G oocurs

absout a manth latsr than previcas sstimates. In acklition, we compare our ssimatian of 0 ar E7 to 20th
K s century simulations fram the WCRP CMIP2 multi-mode] archive assessed in the IFCC dib Assescment
River discharge Rrpurl.RudeT:Rland ET from A06GCM:s tend o uru:.'exlul:ul ke anmual cycle, bt the () estimated n this
Evapa Irans pirat s studdy exhibits additional semi-armual wariations tkat exists in & 25 well. In addition, & from the madels
fleali: sensey shows a maximum peak 2 mostks earlier than the estimated O, which is dse partly o the river discharge

GRACE ibme lag that most AGEMs do ol take imie accousd. These results indicate that current AOGC RS exhibid
basic shortcomings in simulating (3 and T acouraiely. The new meihod developed here can be a useful
consiraind on these models and can be uselal to close badget of global waler balance.
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Satellite-based global-ocean mass balance estimates
of interannual variability and emerging trends in
continental freshwater discharge

Tapdarul H. Syed™", lames S. Famigliett®™', Don P, Chambers®, Josh K. Willis®, and Kyle Hilburm'

"Departerent of Earth Systemn Science, Univanity of Cabfornia, Invine, D& 92697, "Department of Applied Gaodogy, Indian School of Minss, Dhanbad
B26004, India; “UC Canter for Bydralogic Modaling, Urisersity of Caomia, Irdine, CA 92697, "Colkgs of Marine Sckenos, Untesity of Scuth Florida,
St Patersbusg, FL 33704 “let Propulsion Laboratoryg Calitodnia institute of Technelogy, Pasadena, CA S110% and "Ramote Seireid e Sywtams, Sanda Roda,

(=LA 12N

Edited* by Ay Cazenave, Cenira National d'Eudes Spatiakes (ONES], Towouse Cedex 3, France, and approved Ausgust 27, 3010 (received for reviaw March

4, 2010

Freshwater discharge from the continents is a key component of
Earth's water cycle that sustains human life and ecosystem health,
Surprisingly, owing to s number of sock ic and palitical ob-
stackes, a comprehensive global river discharge chserving system
does not yet exist. Here we use 13 years (1994-2006) of satellite
precipitation, svaporation, and sea bevel data in an oczan mass
balance to estimate freshwater discharge into the global ocean.
Results indicate that global freshwater discharge aversged
346,055 km?y for the study pevicd while exhibiting significant
interannual wariability driven primarily by El Nifio Southern Oscil-
lation eycles. The method described hiere can ultimately be used to
estimate long-term global discharge trends as the records of
sea level rse and oozan temperature lengthen. For the relatively
short 13-year period studied here, global discharge increased by
Sal km? fy?, which was largely attributed to an ncrease of global-
acean evaporation (768 km?/y?). Sustained growth of these flux
rates imto long-term trends would provide evidence for increasing
intensity of the hydrologic oycle.

dimate | global water cpcla | ydralogy | remobe sersing | obes riathon

yuemly, most prior attemnpts bave foosed on climatologic or
anual averages taken over hetorical periods of varying length
(18 anil references therein).

Recent advances in remole sensing technsues, particulardy in
the we of mterlerometric ssmthetic apertwre radar {16) and radar
altimetry (1Y), provide allematives 1@ overcome some ol the
lmigatkems ol monitormg mver discharnge and sher surlsce water
Bodees encountered using ground-based measurements {16}, The
Ciravity Recovery amd Climate Expeniment (GRACE) satellite
meakm {20 provides another aption For remote sensing of fver
dischiarge From large mver Basn to contisental scales, Terrestrial
waler storage observations from GRACE, when combined with
precipitation and evaporation data (or smilarly, with the atmo-
spheric masture storage change and drvergence). can be wsed 1o
slve awater balance For the discharge Bus (17, 21 Thas methead
presents He most viable means W estinmte discharge in near-real
tiene, althowgh it is limited o the period of available land-water
storage obvervations [rom the GRACE mission (March 2002—
present) and its spatial-temporal accuracy range (150,000 kin®;
=10 days).
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Discharge Monitoring Infrastructure
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Tornado Graph of GRDC's Data Archive
&

Availability of historical discharge data in the GRDC database by year #GRDC @
Number of stations per year represented in the GRDC database: status 2009 vs. status 1999
7000 6000 5000 4000 3000 2000 1000 0 1000 2000 3000 4000 5000 6000 7000
number of stations 2000 number of stations

T000 6000 5000 4000 3000 2000 1000 o 1000 2000 3000 4000 5000 6000 7000
Global Runoff Data Centre, Koblenz, Germany, 2010
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Existing Realtime Reporting Discharge Gauges

Realtime Archive
United States 9230 25300
Canada 1700 5607
European Union 3800

GRACE Spatial Resolution is the equivalent of operating 750 stations
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Temperature Stations in NCDC
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Special Supplement to the Bufletin of the Amencan Mateorological Saciety:
Val. 91, No. 6, June 2010
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Annual Precipitation Profiles
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Continental Runoff
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Precipitation Monitoring
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Continental Runoff Fluxes in 2010
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Runoff Anomalies

a) Absolute Anomaly 2010 vs. 1901-2002 a) Absolute Anomaly 2010 vs. 2000—-2010
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Conclusions
« How our descendent will know what ———
was the Earth like in our time? L

* What kind of observing system we
need to operate?

- What do we want to measure?

- How can we measure (in-situ vs.
satellite?

- How we can provide seamless access to
observations?

"Ceterum censeo Carthaginem esse delendam...”
Cato, A.D. 234-149
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