

Flood disaster in Hanoi

- Tropical cyclones
- Historical flood events with damages
- Death toll: around 100psn/year Economic loss: \$1.2 billion (2006)

Increasing demand for hydropower generation

- Increasing by 15% in each year (due to economic growth & urbanization)
- Hydropower: 60% of total electricity
- Unstable water supply (70% of annual
- rainfall accumulates in Jul-Sep)

The Red River Basin: 160,000 km²

The Red River Basin: 160,000 km²

WEB-DHM Wang et al. WRR, 2009 (Water and Energy Budget-based Distributed Hydrological Model)

Drought Monitoring, Seasonal Prediction and Climate Change Impact Assessment

Jaranilla-Sanchez, P. A., et al. (2011), Water Resour. Res., in press.

Hydrological drought

Drought Monitoring, Seasonal Prediction and Climate Change Impact Assessment **Numerical Weather Prediction Re-analysis** Observed **Legend:** P = precipitation; **Biophysical Inputs** Q = discharge (simulated and observed); Meteorological Input θ = soil moisture (root zone and surface) GW_I =groundwater level measured from the soil surface T= temperature WEB-DHM ET=evapotranspiration calibrate FT θ GW, P Q **Q**_{obs}

Agricultural Drought

Drought Quantification: SA

Spatial SA: Philippines

Impacts of Drought in Agriculture: Philippines

economics

Seasonal Drought Prediction

Month	SA FROM OBSERVED DISCHARGE	SA FROM FORECAST DISCHARGE	Close enough
June	-0.954	-1.010455	drought conditions
July	-1.30505	-1.61425	can be forecasted
August	-0.4937	-2.41276	

Seasonal Drought Prediction

Months	1 st		2 nd		3rd	
Year	Observed	SFC	Observed	SCF	Observed	SCF
1983					~	
1991			~	$\overline{\mathbf{A}}$	\$	
1997						
1999-2000	\checkmark		\checkmark	$\overline{\mathbf{A}}$		

ARROW Legends: red= drought; green=normal; blue=wet

e.g. increase towards drought conditions

Evaluation for relative distribution: Correlation coefficient(CC)

Evaluation of absolute value: RMSE

Scoring

CC and RMES are more than all GCM averaged value : 1 CC or RMES are more than all GCM averaged value : 0 CC and RMES are less than all GCM averaged value : -1

Climate Change Impact Assessment

D

Climate Change Impact Assessment

Climate Change Impacts on Flood Control Plan in Indonesia

10year Probable flood Current Climate

10year Probable flood 50 years later

SA Past and Near Future: Philippines

SA category	Past GCM ense		
R	# of Months		
Mild	9		
Moderate	0		
Severe	0		
TOTAL	9		

SA category	Past GCM en		
SMS	# of Months		
Mild	20		
Moderate	11		
Severe	4		
TOTAL	35		

Legend:

R=rainfall

moisture

Q=discharge

90 80 Past 70 Near Future 60 50 % 40 30 20 10 0 R Q SMS SMR ET

Near future GCM ensemble		
# of Months	%	
13	5.70	
2	0.88	
0	0	
15	6.58	

Near future GCM ensemble			
# of Months	%		
37	16.22		
39	17.11		
113	49.56		
189	82.89		

Large increase in severe drought conditions at the root zone in the near future

-translates to more severe agricultural drought

	Near future GCM ensemble		
	# of Months	%	
	38	16.67	
	38	16.67	
	32	14.03	
	108	47.37	

ET=evapotranspiration

SMR=root zone soil

SMS=surface soil moisture

