

NASA's Soil Moisture Active-Passive (SMAP) Mission

Kyle C. McDonald

Department of Earth and Atmospheric Sciences The City College of New York and Water and Carbon Cycles Group Jet Propulsion Laboratory California Institute of Technology

5th GTN-H Coordination Panel Meeting University of Tokyo, Tokyo, Japan March 12-13, 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

 National Aeronautics and Space Administration
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SMAP Has Focused Science Objectives

SMAP is one of the four first-tier missions recommended by the NRC Earth Science Decadal Survey Report

Primary Science Objectives:

- Global, high-resolution mapping of soil moisture and its freeze/thaw state to:
 - Link terrestrial water, energy and carbon cycle processes
 - Estimate global water and energy fluxes at the land surface
 - Quantify net carbon flux in boreal landscapes
 - Extend weather and climate forecast skill
 - Develop improved flood and drought prediction capability

Soil moisture and freeze/thaw state are primary environmental controls on Evaporation and Net Primary Productivity

SMAP Applications from Decadal Survey

Decadal Survey Panels	Cited SMAP Applications
1. Water Resources and Hydrological Cycle	Floods and Drought Forecasts Available Water Resources Assessment Link Terrestrial Water, Energy and Carbon Cycles
2. Climate and Weather	Longer-Term and More Reliable Atmospheric Forecasts
3. Human Health and Security	Heat Stress and Drought Vector-borne and Water-Borne Infectious Disease
4. Land-Use, Ecosystems, and Biodiversity	Ecosystem Response (Variability and Change) Agricultural and Ecosystem Productivity Wild-Fires Mineral Dust Production

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

"Link Terrestrial Water, Energy and Carbon Cycle Processes"

Water and Energy Cycle

Soil Moisture <u>Controls</u> the Rate of Continental Water and Cycles

Do Climate Models Correctly Represent the Landsurface Control on Water and Energy Fluxes?

What Are the Regional Water Cycle Impacts of Climate Variability?

Landscape Freeze/Thaw Dynamics <u>Drive</u> Boreal Carbon Balance [The Missing Carbon Sink Problem].

Are Northern Land Masses Sources or Sinks for Atmospheric Carbon?

4

3

Source: Running, S.W., and J.S. Kimball, 2005. Satellite-based analysis of ecological controls for land-surface evaporation resistance. Encyclopedia of Hydrological Sciences. Part 9, Ecological and Hydrological Interactions. DOI: 10.1002/0470848944.hsal10.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

"Estimate Global Water and Energy Fluxes at the Land Surface"

- IPCC models currently exhibit large differences in soil moisture trends under simulated climate change scenarios
- Projections of summer soil moisture change (Δ SM) show disagreements in Sign among IPCC AR4 models

SMAP soil moisture observations will help constrain model parameterizations of surface fluxes and improve model performance

Li et al., (2007): Evaluation of IPCC AR4 soil moisture simulations for the second half of the twentieth century, Journal of Geophysical Research, 112.

 National Aeronautics and Space Administration
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

"Extend Weather and Climate Forecast Skill"

Predictability of seasonal climate is dependent on boundary conditions such as sea surface temperature (SST) and soil moisture – Soil moisture is particularly important over continental interiors.

24-Hours Ahead

High resolution soil moisture data will improve numerical weather prediction (NWP) over continents by accurately initializing land surface states

McDonald et al. (2004): Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO₂ with spaceborne microwave remote sensing. *Earth Interactions* 8(20), 1-23.

9

SMAP Requirements Are Stable and Endorsed by Science Community

SMAP requirements have heritage from Hydros and were developed by extensive community interaction through science workshops - The July '07 NASA SMAP Science Workshop confirmed that these requirements satisfy the SMAP mission science objectives

Scientific Measurement Requirements	Instrument Functional Requirements	Mission Functional Requirements			
Soil Moisture:	L-Band Radiometer:	DAAC data archiving and			
~4% volumetric accuracy in top 5 cm for	Polarization: V, H, U; Resolution: 40 km; Relative	distribution.			
vegetation water content < 5 kg m ⁻² ;	accuracy*: 1.5 K	Field validation program.			
Hydrometeorology at 10 km;	L-Band Radar:	Integration of data products			
Hydroclimatology at 40 km	Polarization: VV, HH, HV; Resolution: 10 km;	integration of data products			
	Relative accuracy*: 0.5 dB for VV and HH	assimilation			
	Constant incidence angle** between 35 and 50				
Freeze/Thaw State:	L-Band Radar:				
Capture freeze/thaw state transitions in	Polarization: HH; Resolution: 3 km; Relative				
integrated vegetation-soil continuum	accuracy*: 0.7 dB (1 dB per channel if 2 channels				
with 2-day precision, at the spatial scale	are used);				
of landscape variability (3 km).	Constant incidence angle** between 35 and 50				
Sample diurnal cycle at consistent time	Swath Width: 1000 km	Orbit: 670 km, circular,			
of day	Minimize Faraday rotation (degradation factor at	polar, sun-synchronous,			
Global, 3-4 day revisit	L-band)	~6am/pm equator crossing			
Boreal, 2 day revisit					
Observation over a minimum of three	Minimum three-year mission life	Three year baseline			
annual cycles		mission***			
* Includes precision and calibration stability, and antenna effects					
** Defined without regard to local topographic variation					

*** Includes allowance for up to 30 days post-launch observatory check-out

11

 National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Nominal SMAP Mission Overview

Science Measurements

- Soil moisture and freeze/thaw state
- Orbit:
 - Sun-synchronous, 6 am/6pm nodal crossing
 - 670 km altitude

• Instruments:

- L-band (1.26 GHz) radar
 - Polarization: HH, VV, HV
 - SAR mode: 1-3 km resolution (degrades over center 30% of swath)
 - Real-aperture mode: 30 x 6 km resolution
- L-band (1.4 GHz) radiometer
 - Polarization: V, H, U
 - 40 km resolution
- Instrument antenna (shared by radar & radiometer)
 - 6-m diameter deployable mesh antenna
 - Conical scan at 14.6 rpm
 - incidence angle: 40 degrees
 - Creating Contiguous 1000 km swath
 - Swath and orbit enable 2-3 day revisit

• Mission Ops duration: 3 years

SMAP has significant heritage from the Hydros mission concept and Phase A studies

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SMAP Mission Uniqueness

SMAP is the first L-band combined active/passive mission providing **both** high-resolution and frequent revisit observations

- L-band radiometer provides coarse-resolution (40 km) high absolute accuracy soil moisture measurements for climate modeling and prediction
- L-band radar provides high resolution (1-3 km) observations at spatial scales necessary to accurately measure freeze/thaw transitions in boreal landscapes
- Combined radar-radiometer soil moisture product at intermediate (10 km) resolution provides high resolution and high absolute accuracy for hydrometeorology and weather prediction
- Frequent global revisit (~3 days, 1-2 days for boreal regions) at high spatial resolution (1-10 km) enables several critical applications in water balance monitoring, basin-scale hydrologic prediction, flood monitoring and prediction, and human health

Baseline Science Data Products

Data Product	Description		
L1B_S0_LoRes	Low Resolution Radar σ° in Time Order		
L1C_S0_HiRes	High Resolution Radar σ° on Earth Grid	Global Mapping L-Band Radar and Radiometer	
L1B_TB	Radiometer T_B in Time Order		
L1C_TB	Radiometer T_B on Earth Grid		
L2/3_F/T_A	Freeze/Thaw State on Earth Grid	High-Resolution and Frequent-Revisit Science Data	
L2/3_SM_A	Radar Soil Moisture on Earth Grid		
L2/3_SM_P	Radiometer Soil Moisture on Earth Grid		
L2/3_SM_A/P	Radar/Radiometer Soil Moisture on Earth Grid		
L4_Carbon	Freeze/Thaw Model Assimilation on Earth Grid	Observations + Models = Value-Added Science Data	
L4_SM_profile	Soil Moisture Model Assimilation on Earth Grid		

15

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

L3_FT_A AM-PM Combined Product Prototype

• Daily F/T state maps:

-Frozen (AM & PM),

- -Thawed (AM & PM),
- -Transitional (AM frozen, PM thaw),
- -Inverse-Transitional (AM thaw, PM frozen)
- Global domain F/T affected areas:

- 66 million km² or 52% of global vegetated area);

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Applications associated with Decadal Survey priorities for SMAP data

Decadal Survey Objective	Specific Application	Science Requirement	
Weather Forecast	Initialization of Numerical Weather Prediction (NWP)	Hydrometeorology	
Climate Prediction	Boundary and Initial Conditions for Seasonal Climate Prediction Models	Hydroclimatology	
	Testing Land Surface Models in General Circulation Models		
Drought and Agriculture Monitoring	Seasonal Precipitation Prediction		
	Regional Drought Monitoring	Hydroclimatology	
	Crop Outlook		
Flood Forecast	River Forecast Model Initialization		
	Flash Flood Guidance (FFG)	Hydrometeorology	
	NWP Initialization for Precipitation Forecast		
	Seasonal Heat Stress Outlook	Hydroclimatology	
Human Health	Near-Term Air Temperature and Heat Stress Forecast	Hydrometeorology	
	Disease Vector Seasonal Outlook	Hydroclimatology	
	Disease Vector Near-Term Forecast (NWP)	Hydrometeorology	
Boreal Carbon	Freeze/Thaw Date	Hydrometeorology	

Soil Moisture Active and Passive (SMAP) Mission

