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WMO

» National Meteorological and Hydrological
services (191) are Members

* Normative, Research, Operations and Services
* Global, Regional and National

 Weather, water and Climate EWS and Risk
Assessments

* The whole 1s greater than the sum of
individual parts



DISASTER RISK MANAGEMENT
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Building resilience
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China
Turkmenistan 1. Floods (1931) 2,500,000

10. Earthquake (1948) 120,000 4. Earthquake (1976) 300,000
5. Earthquake (1920) 234,000

Bangladesh
2. Cyclone (1970) 500,000
9. Cyclone (1991) 138,000

Myanmar
8. Cyclone (2008) 138,000+

Indonesia
6. Tsunami (2004) 230,000+




The vision of the GFCS

Users, Government, private sector, research, agriculture,
water, health, construction, disaster reduction, environment, tourism,
transport, etc

User Interface
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» Provide climate services for the most
vulnerable aiding in the adaptation to
seasonally, yearly and multi-yearly
reoccurring events

» Close the gaps between climate data
providers and users both in the
availability and handling

» Serve as a platform to bring together all
involved stakeholders ranging from
globally acting agencies to the farmers
on the ground




Modelling science-policy interface

HUMAN ACTIVITY (EPPA)

agriculture & national and/or regional economic
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What we know

Science underpins policy | The
vision, progress and strategy

The UNFCCC calls on national Observe Driver of changes Understand changes Future changes
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In 2010 national governments agreed to set the
upper limit of acceptable global warming at 2°C.
The review will determine whether the 2°C goal
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National governments decided to:
a) Review the adequacy of the 2°C
limit of global warming: and
) Assess the progress in limiting

global warming.
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The time to
actis now

rtional governments to take ambitious
tion to bend the e
put humankind on track to limit global

warming and to adapt to climate change.

Cycle repeats after a period of 7 years



Science | Mapping the problem
and the ‘solution space'

Core framing in terms of risks
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(A) Risks from climate change...
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(B) ...depend on cumulative CO, emissions...
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C) ...which in turn depend on annual
GHG emissions over the next decades
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Some decisions needing science
support

 Disaster Risk Reduction — post Hyogo
* Sustainable Development — post 2015

e Climate Change agreement — post 2015
e Habitat III — 2016






