

GEOSS Joint Asia - Africa Water Cycle Symposium 25, Nov – 27, Nov, 2013 Tokyo, Japan

Country Report: Nepal

Shiv Kumar Sharma Director General Department of Irrigation

Kathmandu, Nepal

Nepal NEPAL : COUNTRY PROFILE

- Total Area 147,181 Sq. Km
- Located between Latitudes 26° 22' and 30° 27'; Longitudes-80° 40' and 88° 12'
- Rectangle in Shape average length in east west direction 885 km and average width – 193 km
- Mountains cover 44 %; Hills – 30% and Terai – 26%
- Population 23.15 million with growth rate 2.25
- Average per capita GDP \$470
- Agriculture 40% on national GDP

Nepal: Climate

- Four seasons

 (spring, summer monsoon, autumn, winter)
- Temperature: 15°C mean – Varies by altitude
- Rainfall: 1875.60mm
- Uneven distribution
- Most floods in the monsoon season

Nepal: Climate

 Rainfall – dominated by south easterly monsoon

Items	Monsoon	Post Mon	Winter	Pre Mon	Annual
Rainfall (mm)	1478.2	79.0	64.9	235.4	1857.6
% Rainfall	79.58	4.25	3.49	12.68	100

 Rainfall contributes 267 MCM of water annually (26.7 MCM – Snow; 240.3 MCM – Rain)

Annual mean Rainfall distribution

Nepal: Climate Change

- Earth warmed by 0.7°c
 - since 1900
- Nepal : Temp increase
 - 0.09⁰c in Hill
 - 0.04⁰ C in Terai
 - Increase air surface temp during winter than in summer
 - No distinct long term trend in precipitation

Spatial variation of annual mean temperature trends ⁰C (45 stations 1976 -2005)

Consistent and continuous warming at annual rate of 0.04⁰ c/yr

Nepal

- Warming trend all over country but not uniform spatially
- Some part has decreasing trend with -0.06⁰c/yr

Annual Precipitation Trend (mm/yr)

- No any significant trend
- Overall Increase by 3.6 mm/yr
- Observed even 40 mm/yr increase in Kaski
- Observed even -40 mm/yr decrease in Dolakha

Nepal Nepal is Vulnerable to Climate Change

- Fragile mountain ecosystem
- Lack of appropriate mechanisms to response its implications
- Nepal's Mountain highly sensitive to climate change
- Country is the under developed and its economy is entirely based on agriculture

Sectors Vulnerable to Climate Change

- Water resources
- Agriculture and food security
- Natural ecosystem and Biodiversity
- Health
- Energy

Water induced Disasters in Nepal

- Glacial Lake
 Outburst Floods
- Floods and Landslides
- Landslide Dam Burs
- Avalanches
- Flashfloods
- Bank Erosio

AWCI

Glacial Lake Outburst Floods

Nepal

•3,252 glaciers and 2,323 glacial lakes
•20 Potential GLOF sites

Overall goal: Reduction of hydrological and meteorological disasters and effective uses of water resources

8

China

Problem to be addressed:

- Upper Reach of the Basin
 - Flood Damage, Landslides, Bank Erosion
 - Water pollution

Nepal

- Maintaining minimum regular flow in dry period
- Lower reach of the Basin
 - Flooding, Inundation, Bank Erosion
 - River Bed Rising
 - Drought damage on food security

Bagmati River Basin

Measures to be taken:

- Enhance quantitative and qualitative water cycle observation in the basin
- Demonstrate flood and drought early warning system
- Assess climate change impacts
- Prototype data and information integration and sharing system
- Enhance observational, modeling and application capability
- Contribute to National climate change policy

Bagmati River Basin

Outputs:

- Enhance qualitative and qualitative water cycle observation
 - Prototype near-real time rainfall observation and data dissemination systems by coupling satellite and in-situ measurements which is used as inputs into flood prediction.
 - Develop comprehensive in-situ and satellite observation data archive for improving monitoring capability of water cycle and developing hydrological models to be used for early warning.
 - Develop long-term and comprehensive climate observation data archive which is used for climate change analysis climate projection model bias correction.

Bagmati River Basin

Outputs:

- Demonstrate flood and drought early warning system
 - Develop hydrological models for converting meteorological data to hydrological information.
 - Prototype real-time data management, modeling and information dissemination systems.
- Assess climate change impacts
 - Select GCMs which can express the regional climate properly.
 - Implement bias correction and downscaling (statistical- and dynamic-) of the selected GCMs.
 - Develop socio-economic data archive
 - Compare changes of frequency and intensity of flood, drought and water-nexus.

Bagmati River Basin

Outputs:

- Prototype data and information integration and sharing system
 - Develop an integrated water portal for improving data accessibility and data sharing.
 - Prototype a data integration and analysis and information dissemination system
- Enhance observational, modeling and application capability
 - Develop training modules of satellite remote sensing, modeling, bias correction and downscaling, make design of training courses on integrated observations, early warning and climate change assessment, and offer the courses.
 - Promote secondary educational programs in collaboration with universities.

Outputs:

Nepal

- Contribute to National climate change policy
 - Enhancement of crop water requirement estimation, evapo-transpiration, design discharge estimation, estimation of dependable discharge for hydro power generation
 - Application of models to estimate design flood discharge for hydraulic structures and flood water management

Key Leaders and Contributors (National):Ministry of Irrigation (Mol)

- Department of Irrigation (DoI)
- Department of Water Induced Dissater Prevention (DWIDP)
- Ministry of Urban Development
 - Bagmati River Basin Improvement Project
- Ministry of science and Technology
 - Department of Hydrology and Meteorology
- Universities

Nepal

- Tribhuwan University
- Kathmandu University

Contributors (International): JAXA, DIAS, WMO/HyCOS, CEOS Water Portal, UNESCO, ITC, Utokyo, UNU

