

JAXA's Contributions to the Water Cycle Observation

Kazuo Umezawa JAXA/SAPC

25 November 2013, GEOSS Joint Asia - Africa Water Cycle Symposium, Tokyo, Japan

AMSR2 onboard GCOM-W1 "SHIZUKU"

- Successor of AMSR-E on Aqua and AMSR on ADEOS-II.
- Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E).
- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation.
- Two-point external calibration with improved HTS (hot-load).
- Add a redundant momentum wheel to increase reliability.

GCOM-W	GCOM-W1/AMSR2 characteristics			AMSR2 Channel Set					
Scan and rate	Conical scan at 40 rpm	Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]			
Antenna	Offset parabola with 2.0m dia.	6.925/	6.025/						
Swath width	1450km	7.3	350		1.8 (35 x 62)				
Incidence angle	Nominal 55 degrees	10.65	100	V	1.2 (24 x 42)	10			
Digitization	12bits	18.7	200	and	0.65 (14 x 22)	10			
Dynamic range	2.7-340K	23.8	400	Н	0.75 (15 x 26)				
		36.5	1000		0.35 (7 x 12)				
Polarization	Vertical and horizontal	89.0	3000		0.15 (3 x 5)	5			

GCOM-W1 Data Products

Standard Products

	Products	Areas	Res.		Range		
				Release	Standard	Goal	
	Brightness Temperature	Global	5-50km	±1.5K	±1.5K	± 1.0 K (systematic) ± 0.3 K (random)	2.7-340K
	Integrated water vapor	Global, over ocean	15km	± 3.5 kg/m ²	± 3.5 kg/m ²	$\pm 2.0 \text{ kg/m}^2$	0-70kg/m ²
	Integrated cloud liquid water	Global, over ocean	15km	\pm 0.10kg/ m ²	\pm 0.05kg/ m ²	\pm 0.02kg/ m ²	0-1.0kg/m ²
	Precipitation	Global, except cold latitude	15km	Ocean $\pm 50\%$ Land $\pm 120\%$	Ocean $\pm 50\%$ Land $\pm 120\%$	Ocean $\pm 20\%$ Land $\pm 80\%$	0-20mm h ⁻¹
G E O	Sea surface temperature	Global, over ocean	50km	±0.8°C	±0.5°C	±0.2°C	-2-35°C
0	Sea surface wind speed	Global, over ocean	15km	±1.5m s ⁻¹	±1.0m s ⁻¹	±1.0m s ⁻¹	0-30m s ⁻¹
	Sea ice concentration	Polar region, over ocean	15km	±10%	±10%	±5%	0-100%
	Snow depth	Land	30km	±20cm	±20cm	±10cm	0-100 cm
	Soil moisture	Land	50km	±10%	±10%	±5%	0-40%

Research Products: Potential candidates include all-weather sea surface wind speed, sea ice moving vector, sea ice thickness, land hydrological assimilated products, and so forth.

GCOM-W1 Data Providing Service

GCOM-W1 Data Providing Service

宇宙航空研究開発機構 Japan Aerospace Exploration Agency

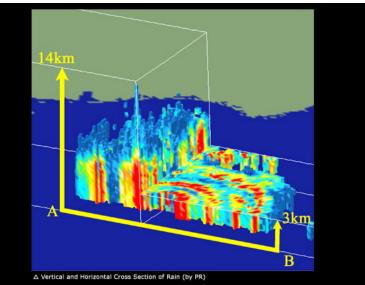
Welcome,

This web service is online data service to provide products processed from Advanced Microwave Scanning Radiometer sensor series data. We provide products derived from data obtained by AMSR onboard ADEOS-II (Midori II) and AMSR-E onboard Aqua with free of charge. The new products, which are observed by AMSR2 onboard GCOM-W1 (SHIZUKU), will be available soon after the distributing preparation is completed.

User registration is required to use the products. If you have not registered yet, register your e-mail address as your user account at "User Registration". If you try services at this site before user registration, login with a e-mail address "guest" (password is not required).

Copyright (C) 2011 Japan Aerospace Exploration Agency

Input e-mail address and password. E-mail address: guest (User Account) Password: Password: ①日本語 @English Save Login Status Login User Registration | If you forgot your password For Beginners


https://gcom-w1.jaxa.jp/

- Standard products of AMSR2, AMSR-E, and AMSR
- AMSR2 brightness temperatures were released in January 2013.
- AMSR2 geophysical parameters were released in May 2013.

Tropical Rainfall Measuring Mission (*** (TRMM)

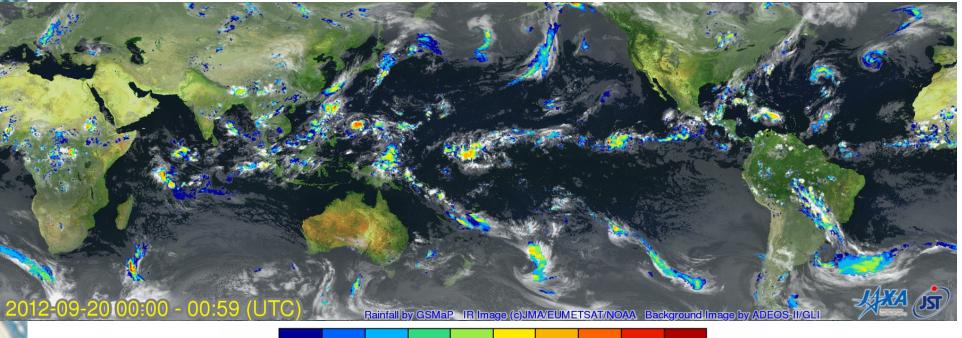
Focused on rainfall observation. First instantaneous rainfall observation by three different sensors (PR, TMI, VIRS). PR, active sensor, can observe 3D structure of rainfall.

Targeting tropical and subtropical region, and chose non-sunsynchronous orbit (inc. angle 35 degree) to observe diurnal variation.

Hurricane KATRINA (12L) 2005-08-28 03:23-03:27(UTC)

US-Japan joint mission

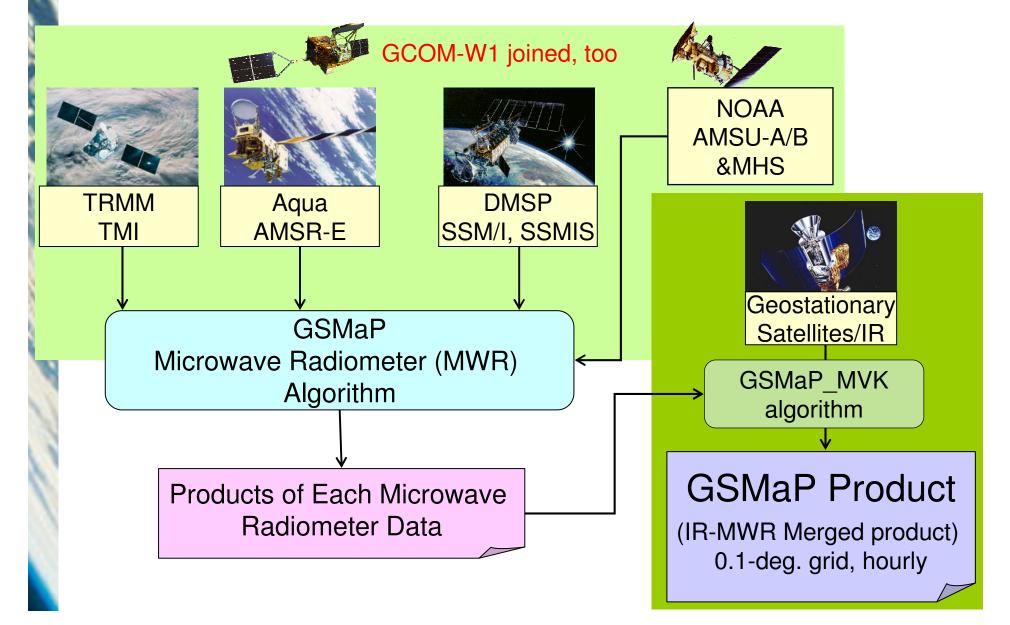
Japan: PR, launch US: satellite, TMI, VIRS, CERES, LIS, operation


Launch	28 Nov. 1997 (JST)
Altitude	About 350km (since 2001, boosted to 402km to extend mission operation)
Inc. angle	About 35 degree, non-sun- synchronous orbit
Design life	3-year and 2month (still operating)
Instruments	Precipitation Radar (PR) TRMM Microwave Imager (TMI) Visible Infrared Scanner (VIRS) Lightning Imaging Sensor (LIS) CERES (not in operation)

JAXA/EORC Global Rainfall Watch

http://sharaku.eorc.jaxa.jp/GSMaP/

-hourly animation of Typhoon 17 and global rainfall observed by GSMaP_NRT from 20 Sep. to 1 Oct., 2012.



Rain 0.1 0.5 1.0 2.0 3.0 5.0 10.0 15.0 20.0 25.0 30.0 [mm/hr]

JAXA/EORC Global Rainfall Watch web site releases GSMaP_NRT products by merging TRMM and a number of passive microwave radiometers with geo-stationary IR information. Providing hourly and 0.1-degree grid data 4-hour after observation.

- browse images, Google Earth KMZ files, 24-hour animations
- binary data for research purposes
- reanalysis version (GSMaP_MVK) from Mar. 2000 to Nov. 2010 is also available

Global Satellite Mapping of Precipitation (GSMaP)

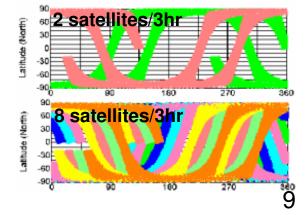
Global Precipitation Measurement (GPM)

GPM: An international satellite mission to be launched by JAXA and NASA in 2014 for precipitation measurements worldwide

Core Satellite (JAXA, NASA) Dual-frequency precipitation radar (DPR) GPM Microwave Imager (GMI)

- Precipitation with high precision
- Discrimination between rain and snow
- Adjustment of data from constellation satellites (The core satellite will fly in non-sun-synchronous orbit.)

(launch in early 2014)


TRMM Era Core Satellite Transformed and the satellites Constellation Satellites

> Constellation Satellites (International Partners)

Microwave radiometers Microwave sounders

Global precipitation every 3 hours

(launch around 2014)

- Improve the accuracy of both long-term and short-term weather forecasts
- Improve water resource management in river control and irrigation systems for agriculture

DPR mechanically integrated to the core observatory (photo provided by NASA)

GPM core observatory in GMI and HGA deployed configuration (photo provided by NASA)

ALOS-2 Specification

ALOS-2: SAR Satellite

- August, 2009: Project Team was established
- December 2009: Preliminary Design Phase
- October 2010: Critical Design Phase
- Planned to be launch in 2013

Orbit			Sun-Synchronous Sub-Recurrent
			Altitude: Approx. 630km
			LST: 12:00 in descending orbit
Design Life			5 years
Loupob	Та	arget	JFY2013
Launch	Rocket		H-2A
Satellite	М	ass	Approx. 2 ton
Saleinie	So	olar Paddle	Two-wings type panel
Mission Da	ta T	ransmission	Direct / via. Data Relay Satellite
Mission Ser	Mission Sensor		Synthetic Aperture Radar (SAR)
Frequency			L-band (1.2GHz)
		Fine	Resolution: 1-3 m, Width: 25 km
Major Observatior Mode	า	Basic	Resolution: 3 / 6 / 10 m Width: 50 / 50 / 70 km
		Wide	Resolution: 100 m, Width: 350 km
Mission Objectives		ives	Crustal change, volcano monitoring, surface deformation
			Sea ice, river, forest and agriculture monitoring etc.

GCOM-C1 and SGLI

Ę

- Improvement of land, coastal, and aerosol observations.
 - fine (250m) spatial resolution
 - polarization/along-track slant view

	GCOM-C SGL	I characteristics (Current baseline)
	Orbit	Sun-synchronous (descending local time: 10:30) Altitude: 798km, Inclination: 98.6deg
	Launch Date	Jan. 2014 (HII-A)
ì	Mission Life	5 years (3 satellites; total 13 years)
	Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)
	Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)
ł	Digitalization	12bit Multi-angle
5	Polarization	3 polarization angles for P obs. for
	Along track direction	Nadir for VN, SW and T,674nm and+45 deg and -45 deg for P869nm
	On-board calibration	 VN: Solar diffuser, Internal lamp (LED, halogen), Lunar by pitch maneuvers (~once/month), and dark current by masked pixels and nighttime obs. SW: Solar diffuser, Internal lamp, Lunar, and dark current by deep space window T: Black body and dark current by deep space window All: Electric calibration

GH Second generation Global Imager	

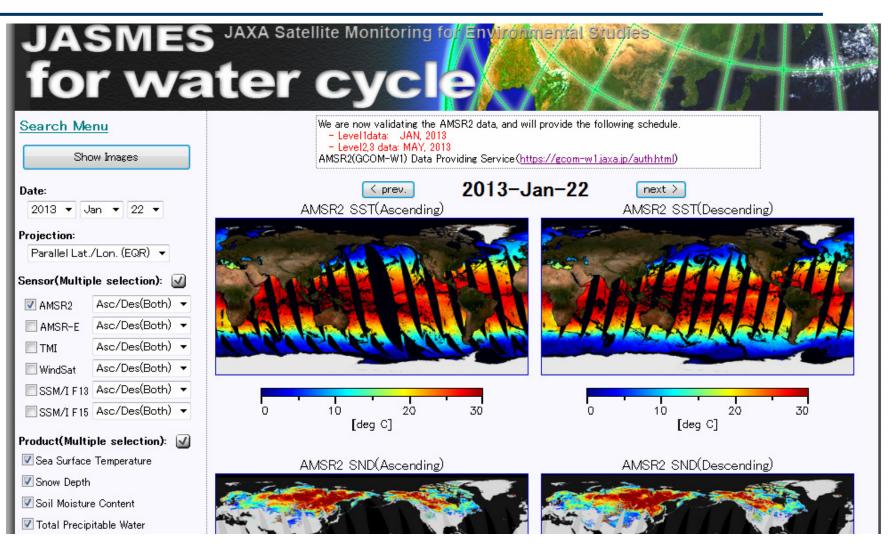
shortwave & thermal InfraRed (T) Scanner (IRS)

(VNR)

Polarization (along track slant) radiometer (P) (sible & Near infrared push-broom Radiometer

> 250m over land or coastal area, and 1km over offshore

			SGLI c	hannels		
	λ	Δλ	L_{std}	L _{max}	SNR t Lstd	FOV
СН	VN, P, S T: j				VN, P, SW: - T: NE∆T	m
VN1	380	10	60	210	250	250
VN2	412	10	75	250	400	250
VN3	443	10	64	400	300	250
VN4	490	10	53	120	400	250
VN5	530	20	41	350	250	250
VN6	565	20	33	90	400	250
VN7	673.5	20	23	62	400	250
VN8	673.5	20	25	210	250	250
VN9	763	12	40	350	1200(@1km)	250
VN10	868.5	20	8	30	400	250
VN11	868.5	20	30	300	200	250
P1	673.5	20	25	250	250	1000
P2	868.5	20	30	300	250	1000
SW1	1050	20	57	248	500	1000
SW2	1380	20	8	103	150	1000
SW3	1630	200	3	50	57	250
SW4	2210	50	1.9	20	211	1000
T1	10.8	0.7	300	340	0.2	500/250
T2	12.0	0.7	300	340	0.2 7	500/ <mark>250</mark>


250m-mode possibility

GCOM-C Products

						1 miles	
Common Radiance • TOA radiance (including system geometric correction)		-	Blue: standard products Red: research products				
Radiation budget by the a Carbon cycle in the Land Land Atmosphere							Cryosphere
Surface reflectan ce	 Precise geometric correction Atmospheric corrected 		Cloud flag/Classification Classified cloud	0	 Normalized water leaving radiance Atmospheric correction 	Area/	Snow and Ice covered area Okhotsk sea-ice
	reflectance • Vegetation index • Above-ground biomass	Cloud	fraction • Cloud top temp/height • Water cloud optical thickness /effective	Ocean color ECV	parameter • Photosynthetically available radiation Euphotic zone depth	distributi on	distribution Snow and ice classification Snow covered area in
Vegetati on and carbon cycle	index • Shadow index • Fraction of Absorbed Photosynthetically		radius • Ice cloud optical thickness Water cloud geometrical	In-water	 Chlorophyll-a conc. Suspended solid conc. Colored dissolved organic matter 		 forest and mountain Snow and ice surface Temperature Snow grain size of
Temp.	Available radiation ECV Leaf area index ECV Surface temperature	Aerosol	thicknessAerosol over the oceanLand aerosol by near	In-water Temp.	Inherent optical properties • Sea surface temp. ECV	Surface propertie	shallow layer Snow grain size of subsurface layer
Applicati on	Land net primary production Water stress trend Fire detection index ECV Land cover type ECV Land surface albedo ECV	ECV Radiation	ultra violet • Aerosol by Polarization Long-wave radiation flux Short-wave radiation flux	Applicati on	Ocean net primary productivity Phytoplankton functional type Redtide multi sensor merged	S	Snow grain size of top layer Snow and ice albedo ECV Snow impurity Ice sheet surface roughness
					ocean color multi sensor merged SST	Boundary	Ice sheet boundary ECV

JAXA

JASMES Daily

http://suzaku.eorc.jaxa.jp/GCOM_W/JASMES_daily/

Space Application For Environment

- SAFE is conducted as an Asia-Pacific Space Agency Forum (APRSAF) initiative
- SAFE is aiming to enhance the capability of Satellite technology in the Asia Pacific region
- Each SAFE implementing team is expected to construct a prototype of **operational use** of Satellite technology within **two years**
- It is recommended to transfer SAFE accomplishments to stake holders to realize sustainable use of the technology

100	Ν
/ping line-up	Completed
SAFE prototy	On-going

Country	Prototyping title
VIETNAM	Integrated water resource management
VIETNAM	Forest monitoring
LAO PDR	Forest monitoring and management
CAMBODIA	Water Cycle and Agricultural Activities
PAKISTAN	Monitoring Water Cycle Variations & Assessing Climate Change Impacts
SRI LANKA	Risk of Sea Level Rise on Coastal Zone
INDONESIA	Potential Drought Monitoring
VIETNAM	Mangrove Forest Mapping and Carbon Stock Estimation
THAILAND	Economic Fish Larvae Mapping and Monitoring
SRI LANKA	Modeling ocean frontal zones using high resolution satellite and float data to locate tuna fish aggregations
SRI LANKA	Mapping and Detecting Wetlands in River Basin
INDONESIA	Assessment of drought impact on rice production in Indonesia by satellite remote sensing and dissemination with web-GIS
CAMBODIA	Water and Food Security under the Climate Change
BANGLADESH	Investigation of sedimentation process and stability of the area around the cross-dams in Meghna estuary
INDONESIA	The assessment of Mangrove Forest Carbon Stock Monitoring of Indonesia using Remote Sensing Approach
MALAYSIA	Agricultural land abandonment
INDONESIA	SAR Rice crop
VIETNAM	Rice crop monitoring

Sri Lanka case

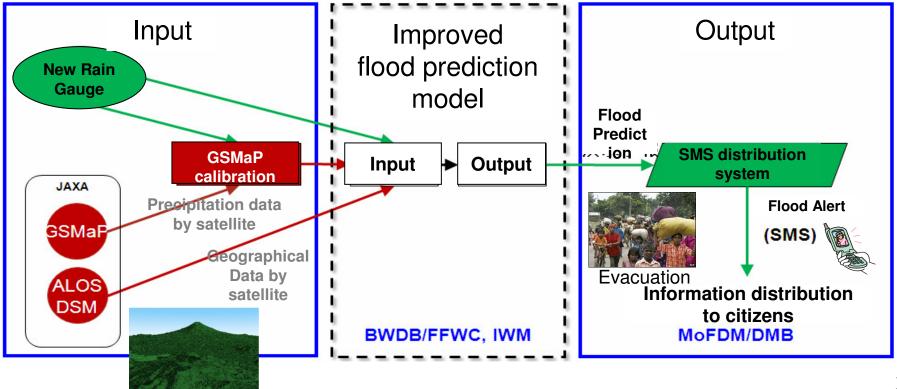
The case of giving an impact to considering the law in the country

Prototyping title; Risk of Sea Level Rise on Coastal Zone (Coastal management) Executor; Mr. Eng. BANDULA Wickramarachchi, Coastal Conservation Department

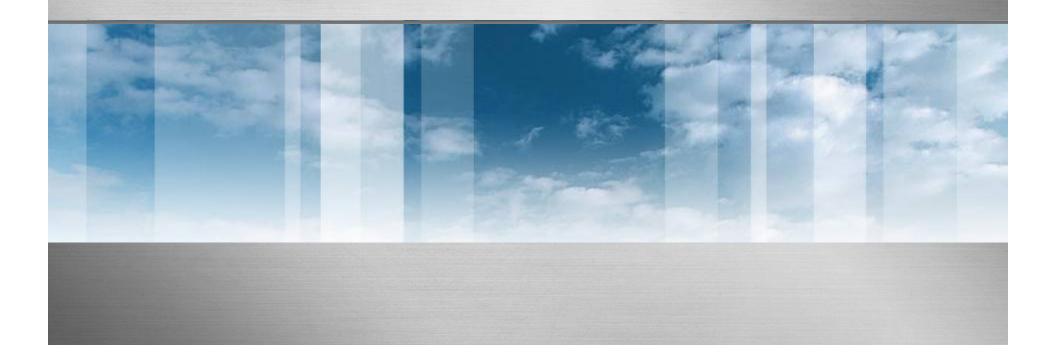
Overview of the stake holder meeting:

Date; 24 Aug 2011

Attendees; Authorities, high rankers and private sectors who has responsible for developing the area


Result of the stake holder meeting;

- Giving committee by including people concerned with work-site operations, as the governmental policy.
- Started discussions for establishment preparations of governmental or administrative laws and ordinances.


ADB and JAXA joint project "Remote sensing application for river basin management" (2012~ 2014) in Bangladesh, Vietnam, and Philippines

- Earlier flood forecasting system using rain precipitation data in upper river basins obtained by Global Satellite Mapping of Precipitation (GSMaP) using TRMM and other satellites, as well as using elevation information of land surface by ALOS.
- Rapid message delivery of flood information to cell phones for the related organizations and the public.
- Development of plan and capacity buildings to continue utilizations.

Thank you for your attention

